Math Doubts

Proof of Quotient Rule of Exponents with same base

$b$ is a literal. It is multiplied by itself $m$ times to form an exponential term $b^{\displaystyle m}$ and also multiplied by itself $n$ number of times to form another exponential term $b^{\displaystyle n}$ mathematically.

$(1) \,\,\,$ $b^{\displaystyle m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$

$(2) \,\,\,$ $b^{\displaystyle n}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n \, factors}$

Now, the division rule of indices with same base can be derived by dividing the exponential term $b^{\displaystyle m}$ by the exponential term $b^{\displaystyle n}$.

$\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}}$ $\,=\,$ $\dfrac{b \times b \times b \times \ldots \times b}{b \times b \times b \times \ldots \times b}$

Now, we have to consider two cases to find the quotient of the exponents with same base.

m > n

Take, the exponent of exponential term $b^{\displaystyle m}$ in the numerator is greater than the exponent of the exponential term $b^{\displaystyle n}$ in the denominator.

$\implies$ $\require{cancel} \dfrac{b^{\displaystyle m}}{b^{\displaystyle n}}$ $\,=\,$ $\dfrac{\cancel{b} \times \cancel{b} \times \cancel{b} \times \ldots \times b}{\cancel{b} \times \cancel{b} \times \cancel{b} \times \ldots \times \cancel{b}}$

Each factor in the denominator is cancelled by the each factor in the denominator but there are some factors remain in the numerator in this case. The remaining total number of factors is equal to the total factors in denominator subtracted from total factors in the numerator.

$\implies$ $\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m-n \, factors}$

Now, express the product of factors in exponential notation.

$\therefore \,\,\,\,\,\,$ $\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}}$ $\,=\,$ $b^{\displaystyle m-n}$

m < n

Assume, the total number of factors in the numerator is less than the total number of factors in the denominator.

$\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}} \,=\, \dfrac{b \times b \times b \times \ldots \times b}{b \times b \times b \times \ldots \times b}$

$\implies \require{cancel} \dfrac{b^{\displaystyle m}}{b^{\displaystyle n}} \,=\, \dfrac{\cancel{b} \times \cancel{b} \times \cancel{b} \times \ldots \times \cancel{b}}{\cancel{b} \times \cancel{b} \times \cancel{b} \times \ldots \times b}$

In this case, there are some factors remain in the denominator and it is equal to the total factors in the denominator subtracted from the total factors in the numerator.

$\implies$ $\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}}$ $\,=\,$ $\dfrac{1}{\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n-m \, factors}} $

Now, write the product of the factors in exponential form.

$\therefore \,\,\,\,\,\,$ $\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}}$ $\,=\,$ $\dfrac{1}{b^{\displaystyle n-m}}$

Therefore, it is proved that the quotient for the division of exponents with same base is equal to the difference of the exponents with same base.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved