The ratio of number $2$ to sum of the negative and positive natural exponential functions is called the hyperbolic secant function.

$e$ is a positive irrational mathematical constant and $x$ is a variable. The positive and negative natural exponential functions are expressed as $e^x$ and $e^{-x}$ respectively in mathematics.

The sum of the positive and negative natural exponential functions is equal to $e^x+e^{-x}$

The ratio of the quantity $2$ to the summation of them is written mathematically as follows.

$\large \dfrac{2}{e^x+e^{-x}}$

Mathematically, the ratio is called the hyperbolic secant function. The hyperbolic secant is represented by ${\mathop{\rm sech}\nolimits}$ but the function is in terms of $x$. Hence, the hyperbolic secant function is represented by ${\mathop{\rm sech}\nolimits}{x}$ in mathematics.

$\large {\mathop{\rm sech}\nolimits}{x} \,=\, \dfrac{2}{e^x+e^{-x}}$

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.