Math Doubts

Find $\alpha+\beta$ if $\tan{\alpha} = \dfrac{x}{x+1}$ and $\tan{\beta} = \dfrac{1}{2x+1}$

$\alpha$ and $\beta$ are two angles. The values of $\tan{\alpha}$ is $\dfrac{x}{x+1}$ and $\tan{\beta}$ is equal to $\dfrac{1}{2x+1}$. In this case, the value of $\alpha+\beta$ should be evaluated in this trigonometric problem.

Use angle sum identity

In this trigonometry problem, the values of $\tan{\alpha}$ and $\tan{\beta}$ are given in algebraic form, and asked us to find the value of sum of angles $\alpha$ and $\beta$. The value of $\alpha + \beta$ can be calculated by using tan of angle sum identity.

$\tan{(\alpha+\beta)}$ $\,=\,$ $\dfrac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\tan{\beta}}$

Now, substitute values of $\tan{\alpha}$ and $\tan{\beta}$ in the expansion of tan of angle sum formula.

$\tan{(\alpha+\beta)}$ $\,=\,$ $\dfrac{\dfrac{x}{x+1}+\dfrac{1}{2x+1}}{1-\Bigg(\dfrac{x}{x+1}\Bigg)\Bigg(\dfrac{1}{2x+1}\Bigg)}$

Simplify the algebraic expression

The tan of sum of two angles $\alpha$ and $\beta$ is expressed in terms of an algebraic expression. It should be simplified to get the value of $\tan{(\alpha+\beta)}$.

$=\,$ $\dfrac{\dfrac{x}{x+1}+\dfrac{1}{2x+1}}{1-\Bigg(\dfrac{x}{x+1}\Bigg)\Bigg(\dfrac{1}{2x+1}\Bigg)}$

$=\,$ $\dfrac{\dfrac{x(2x+1)+1(x+1)}{(x+1)(2x+1)}}{1-\dfrac{x \times 1}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{x \times 2x+ x \times 1+1 \times x+1 \times 1}{(x+1)(2x+1)}}{1-\dfrac{x}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{2x^2+x+x+1}{(x+1)(2x+1)}}{\dfrac{1 \times (x+1)(2x+1) – x \times 1}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{(x+1)(2x+1)-x}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{x \times 2x + x \times 1 +1 \times 2x + 1 \times 1-x}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{2x^2+x+2x+1-x}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{2x^2+x+2x-x+1}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}$

$=\,$ $\dfrac{2x^2+2x+1}{(x+1)(2x+1)}$ $\times$ $\dfrac{(x+1)(2x+1)}{2x^2+2x+1}$

$=\,$ $\dfrac{2x^2+2x+1}{2x^2+2x+1}$ $\times$ $\dfrac{(x+1)(2x+1)}{(x+1)(2x+1)}$

$=\,$ $\require{cancel} \dfrac{\cancel{2x^2+2x+1}}{\cancel{2x^2+2x+1}}$ $\times$ $\require{cancel} \dfrac{\cancel{(x+1)(2x+1)}}{\cancel{(x+1)(2x+1)}}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\tan{(\alpha+\beta)} \,=\, 1$

Find the value of sum of angles

According to trigonometry, the value of tan 45 degrees is one.

$\implies$ $\tan{(\alpha+\beta)} \,=\, \tan{(45^°)}$

Therefore, the value of $\alpha+\beta$ is equal to $45^°$.

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more