$\alpha$ and $\beta$ are two angles. The values of $\tan{\alpha}$ is $\dfrac{x}{x+1}$ and $\tan{\beta}$ is equal to $\dfrac{1}{2x+1}$. In this case, the value of $\alpha+\beta$ should be evaluated in this trigonometric problem.
In this trigonometry problem, the values of $\tan{\alpha}$ and $\tan{\beta}$ are given in algebraic form, and asked us to find the value of sum of angles $\alpha$ and $\beta$. The value of $\alpha + \beta$ can be calculated by using tan of angle sum identity.
$\tan{(\alpha+\beta)}$ $\,=\,$ $\dfrac{\tan{\alpha}+\tan{\beta}}{1-\tan{\alpha}\tan{\beta}}$
Now, substitute values of $\tan{\alpha}$ and $\tan{\beta}$ in the expansion of tan of angle sum formula.
$\tan{(\alpha+\beta)}$ $\,=\,$ $\dfrac{\dfrac{x}{x+1}+\dfrac{1}{2x+1}}{1-\Bigg(\dfrac{x}{x+1}\Bigg)\Bigg(\dfrac{1}{2x+1}\Bigg)}$
The tan of sum of two angles $\alpha$ and $\beta$ is expressed in terms of an algebraic expression. It should be simplified to get the value of $\tan{(\alpha+\beta)}$.
$=\,$ $\dfrac{\dfrac{x}{x+1}+\dfrac{1}{2x+1}}{1-\Bigg(\dfrac{x}{x+1}\Bigg)\Bigg(\dfrac{1}{2x+1}\Bigg)}$
$=\,$ $\dfrac{\dfrac{x(2x+1)+1(x+1)}{(x+1)(2x+1)}}{1-\dfrac{x \times 1}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{x \times 2x+ x \times 1+1 \times x+1 \times 1}{(x+1)(2x+1)}}{1-\dfrac{x}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{2x^2+x+x+1}{(x+1)(2x+1)}}{\dfrac{1 \times (x+1)(2x+1) – x \times 1}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{(x+1)(2x+1)-x}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{x \times 2x + x \times 1 +1 \times 2x + 1 \times 1-x}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{2x^2+x+2x+1-x}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{2x^2+x+2x-x+1}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}{\dfrac{2x^2+2x+1}{(x+1)(2x+1)}}$
$=\,$ $\dfrac{2x^2+2x+1}{(x+1)(2x+1)}$ $\times$ $\dfrac{(x+1)(2x+1)}{2x^2+2x+1}$
$=\,$ $\dfrac{2x^2+2x+1}{2x^2+2x+1}$ $\times$ $\dfrac{(x+1)(2x+1)}{(x+1)(2x+1)}$
$=\,$ $\require{cancel} \dfrac{\cancel{2x^2+2x+1}}{\cancel{2x^2+2x+1}}$ $\times$ $\require{cancel} \dfrac{\cancel{(x+1)(2x+1)}}{\cancel{(x+1)(2x+1)}}$
$\,\,\, \therefore \,\,\,\,\,\,$ $\tan{(\alpha+\beta)} \,=\, 1$
According to trigonometry, the value of tan 45 degrees is one.
$\implies$ $\tan{(\alpha+\beta)} \,=\, \tan{(45^°)}$
Therefore, the value of $\alpha+\beta$ is equal to $45^°$.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved