Math Doubts

Find $2A-3B$ if $A = \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix} $ and $B = \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix} $

$A = \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix} $ and $B = \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix} $ are two matrices. It is required to find the value of an expression $2A-3B$. Actually, the two matrices are $2 \times 3$. It is possible and can be evaluated by some basic mathematical operations in matrices.

Multiply matrix A by 2

The value of $2A$ can be obtained by multiplying the matrix $A$ by number $2$. It can be done by multiplying every element in the matrix $A$ by $2$.

$2 \times A \,=\, 2 \times \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix}$

$\implies 2A \,=\, 2 \times \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix}$

$\implies 2A \,=\, \begin{bmatrix} 2 \times 17 & 2 \times 5 & 2 \times 19 \\ 2 \times 11 & 2 \times 8 & 2 \times 13 \end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 2A \,=\, \begin{bmatrix} 34 & 10 & 38 \\ 22 & 16 & 26 \end{bmatrix}$

Multiply matrix B by 3

Similarly, the value of $3B$ can be evaluated by multiplying the matrix $B$ by number $3$. It can also be done by multiplying each element in the matrix $B$ by $3$.

$3 \times B \,=\, 3 \times \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$

$\implies 3B \,=\, 3 \times \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$

$\implies 3B \,=\, \begin{bmatrix} 3 \times 9 & 3 \times 3 & 3 \times 7 \\ 3 \times 1 & 3 \times 6 & 3 \times 5 \end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 3B \,=\, \begin{bmatrix} 27 & 9 & 21 \\ 3 & 18 & 15 \end{bmatrix}$

Subtract 3B matrix from 2A

The values of $2A$ and $3B$ are two matrices. The value of $2A-3B$ can be obtained by subtracting the matrix $3B$ from the matrix $2A$.

$2A-3B$ $\,=\,$ $\begin{bmatrix} 34 & 10 & 38 \\ 22 & 16 & 26 \end{bmatrix}$ $\,-\,$ $\begin{bmatrix} 27 & 9 & 21 \\ 3 & 18 & 15 \end{bmatrix}$

$\implies 2A-3B$ $\,=\,$ $\begin{bmatrix} 34-27 & 10-9 & 38-21 \\ 22-3 & 16-18 & 26-15 \end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 2A-3B$ $\,=\,$ $\begin{bmatrix} 7 & 1 & 17 \\ 19 & -2 & 11 \end{bmatrix}$



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more