Math Doubts

Find $2A-3B$ if $A = \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix} $ and $B = \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix} $

$A = \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix} $ and $B = \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix} $ are two matrices. It is required to find the value of an expression $2A-3B$. Actually, the two matrices are $2 \times 3$. It is possible and can be evaluated by some basic mathematical operations in matrices.

Multiply matrix A by 2

The value of $2A$ can be obtained by multiplying the matrix $A$ by number $2$. It can be done by multiplying every element in the matrix $A$ by $2$.

$2 \times A \,=\, 2 \times \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix}$

$\implies 2A \,=\, 2 \times \begin{bmatrix} 17 & 5 & 19 \\ 11 & 8 & 13 \end{bmatrix}$

$\implies 2A \,=\, \begin{bmatrix} 2 \times 17 & 2 \times 5 & 2 \times 19 \\ 2 \times 11 & 2 \times 8 & 2 \times 13 \end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 2A \,=\, \begin{bmatrix} 34 & 10 & 38 \\ 22 & 16 & 26 \end{bmatrix}$

Multiply matrix B by 3

Similarly, the value of $3B$ can be evaluated by multiplying the matrix $B$ by number $3$. It can also be done by multiplying each element in the matrix $B$ by $3$.

$3 \times B \,=\, 3 \times \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$

$\implies 3B \,=\, 3 \times \begin{bmatrix} 9 & 3 & 7 \\ 1 & 6 & 5 \end{bmatrix}$

$\implies 3B \,=\, \begin{bmatrix} 3 \times 9 & 3 \times 3 & 3 \times 7 \\ 3 \times 1 & 3 \times 6 & 3 \times 5 \end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 3B \,=\, \begin{bmatrix} 27 & 9 & 21 \\ 3 & 18 & 15 \end{bmatrix}$

Subtract 3B matrix from 2A

The values of $2A$ and $3B$ are two matrices. The value of $2A-3B$ can be obtained by subtracting the matrix $3B$ from the matrix $2A$.

$2A-3B$ $\,=\,$ $\begin{bmatrix} 34 & 10 & 38 \\ 22 & 16 & 26 \end{bmatrix}$ $\,-\,$ $\begin{bmatrix} 27 & 9 & 21 \\ 3 & 18 & 15 \end{bmatrix}$

$\implies 2A-3B$ $\,=\,$ $\begin{bmatrix} 34-27 & 10-9 & 38-21 \\ 22-3 & 16-18 & 26-15 \end{bmatrix}$

$\,\,\, \therefore \,\,\,\,\,\, 2A-3B$ $\,=\,$ $\begin{bmatrix} 7 & 1 & 17 \\ 19 & -2 & 11 \end{bmatrix}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved