The given expression $8x^3-24x^2y+54xy^2-162y^3$ is a polynomial that contains four algebraic terms. In this problem, we have to factorize this algebraic expression.

In the expression $8x^3-24x^2y+54xy^2-162y^3$, the first two terms have a common factor and the remaining two terms have another common factor. So, group the terms of the given algebraic expression on the basis of common factors.

$= \,\,\,$ $(8x^3-24x^2y)+(54xy^2-162y^3)$

In the first group, $8x^2$ is a common factor. Similarly, $54y^2$ is another common factor in the remaining two terms. They can be taken common from them as per distributive property of multiplication over subtraction.

$= \,\,\,$ $8x^2(x-3y)+54y^2(x-3y)$

In the simplified algebraic expression, $x-3y$ is a common factor and it can be taken out common from the terms as per distributive property of multiplication over addition to finish factorisation (or) factorization of the polynomial.

$= \,\,\,$ $(x-3y)(8x^2+54y^2)$

Therefore, the given algebraic expression $8x^3-24x^2y+54xy^2-162y^3$ is factored as $(x-3y)(8x^2+54y^2)$ by using factorization by grouping.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved