Math Doubts

Factorize $5(3x+y)^2+6(3x+y)-8$ by splitting the middle term

factorize problem by splitting the middle term

Five times the sum of three times $x$ and $y$ whole square plus six times sum of three times $x$ and $y$ minus eight is the given mathematical expression.


The given algebraic expression matches with the form of a quadratic expression but the factor $3x+4$ in first and second terms makes the algebraic expression complex.

Simplify the Algebraic expression

It can be expressed to our known quadratic form for our convenience by representing the factor $3x+4$ by a variable. So, let’s denote the factor $3x+4$ by a variable $z$.

$=\,\,\,$ $5z^2+6z-8$

Factorize the expression by splitting

Consider the first term $5z^2$ and the constant term $8$. Now, multiply both of them to find their product.

$5z^2 \times 8 \,=\, 40z^2$

The middle term is $6z$ in the given algebraic expression and let’s verify whether the product $40z^2$ can be split as either sum or difference of two terms, which should be equal to the middle term.

The product $40z^2$ can be split as a product of $10z$ and $4z$.

$\implies$ $40z^2 \,=\, 10z \times 4z$

The sum of the factors $10z$ and $4z$ is not equal to the middle term of the quadratic expression but their difference is equal to the middle term.

So, let’s split the middle term $6z$ as a difference of $10z$ and $4z$ in the algebraic expression.

$=\,\,\,$ $5z^2+10z-4z-8$

It is time to factorize the algebraic expression by grouping the terms.

$=\,\,\,$ $(5z^2+10z)-(4z+8)$

Now, let’s take the common factor out from the terms to factorise the algebraic expression.

$=\,\,\,$ $5z \times z$ $+$ $2 \times 5z$ $-$ $4z$ $-$ $8$

$=\,\,\,$ $5z \times (z+2)$ $-$ $4 \times z$ $-$ $4 \times 2$

$=\,\,\,$ $5z \times (z+2)$ $-$ $4 \times (z+2)$

$=\,\,\,$ $(z+2)(5z-4)$

Bring back the Expression to actual form

The given algebraic expression is successfully factored but it is factored in terms of $z$. Actually, the algebraic expression is given in terms of a variable $x$. Hence, it should be converted in terms of $x$ from $z$.

$=\,\,\,$ $(3x+y+2)\big(5(3x+y)-4\big)$

$=\,\,\,$ $(3x+y+2)\big(5 \times (3x+y)-4\big)$

Now, distribute the factor $5$ over the addition of the terms $3x$ and $4$ as per the distributive property of multiplication over addition.

$=\,\,\,$ $(3x+y+2)(5 \times 3x+5 \times y-4)$

$=\,\,\,$ $(3x+y+2)(15x+5y-4)$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved