Evaluate $\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{x^2-4}{x-2}}$ by L’Hôpital’s rule
$\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{x^2-4}{x-2}}$ $\,=\,$ $\dfrac{0}{0}$
D
$=\,\,$ $\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{\dfrac{d}{dx}\big(x^2-4\big)}{\dfrac{d}{dx}(x-2)}}$
D
$=\,\,$ $\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{\dfrac{d}{dx}\big(x^2\big)-\dfrac{d}{dx}(4)}{\dfrac{d}{dx}(x)-\dfrac{d}{dx}(2)}}$
$=\,\,$ $\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{2x-0}{1-0}}$
$=\,\,$ $\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{2x}{1}}$
D
$=\,\,$ $\displaystyle \large \lim_{x\,\to\,2}{\normalsize 2x}$
$=\,\,$ $2 \times 2$
$=\,\,$ $4$
