The limit of the quotient of $x$ cubed minus $8$ by $x$ squared minus $4$ as the value of $x$ approaches $2$ is written in the following mathematical form.

$\displaystyle \large \lim_{x\,\to\,2}{\normalsize \dfrac{x^3-8}{x^2-4}}$

According to the direct substitution method, let’s find the limit of the $x$ cube minus $8$ by $x$ square minus $4$ as the value of $x$ approaches $2$.

$=\,\,\,$ $\dfrac{2^3-8}{2^2-4}$

$=\,\,\,$ $\dfrac{8-8}{4-4}$

$=\,\,\,$ $\dfrac{0}{0}$

The limit of the rational function $x$ cubed minus $8$ by $x$ squared minus $4$ is indeterminate as the value of $x$ is closer to $2$. It clears that the direct substitution method is not useful to find the limit for the given rational function.

Learn how to find the limit of the quotient of $x$ cube minus $8$ by $x$ square minus $4$ as $x$ approaches $0$ by using factorization or factorisation method.

Learn how to calculate the limit of the quotient of $x$ cubed minus $8$ by $x$ squared minus $4$ as $x$ is closer to $0$ by using formulas.

Learn how to calculate the limit of the quotient of $x$ cubed minus $8$ by $x$ squared minus $4$ as $x$ is closer to $0$ by using formulas.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved