It is purely an algebraic function in fraction form. It seems the limit of this algebraic function can be evaluated by the direct substitution method.

$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^2-3x+2}{x^2-5x+4}}$

Now, find the limit of the algebraic function as $x$ approaches $1$ by the direct substitution method.

$= \,\,\,$ $\dfrac{{(1)}^2-3{(1)}+2}{{(1)}^2-5{(1)}+4}$

$= \,\,\,$ $\dfrac{1-3+2}{1-5+4}$

$= \,\,\,$ $\dfrac{1+2-3}{1+4-5}$

$= \,\,\,$ $\dfrac{3-3}{5-5}$

$= \,\,\,$ $\dfrac{0}{0}$

The limit of the function as $x$ approaches $1$ is indeterminate. So, it can’t be evaluated by the direct substitution method and try another method.

$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^2-3x+2}{x^2-5x+4}}$

Each algebraic function in both numerator and denominator is a quadratic expression and each expression can be factored by the factorization method.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^2-2x-x+2}{x^2-4x-x+4}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x(x-2)-1(x-2)}{x(x-4)-1(x-4)}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{{(x-2)}{(x-1)}}{{(x-4)}{(x-1)}}}$

The factor $x-1$ is a common factor in both numerator and denominator, and they both get cancelled mathematically.

$= \,\,\,$ $\require{cancel} \displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{{(x-2)}\cancel{(x-1)}}{{(x-4)}\cancel{(x-1)}}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x-2}{x-4}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x-2}{x-4}}$

Now, the limit of the algebraic function can be evaluated by trying direct substitution method one more time.

$= \,\,\, \dfrac{1-2}{1-4}$

$= \,\,\, \dfrac{-1}{-3}$

$= \,\,\, \dfrac{1}{3}$

Latest Math Topics

Latest Math Problems

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved