$\dfrac{d}{dx}{\, \Bigg(\dfrac{f{(x)}}{g{(x)}}\Bigg)}$ $\,=\,$ $\dfrac{{g{(x)}}{\dfrac{d}{dx}{f{(x)}}}-{f{(x)}}{\dfrac{d}{dx}{g{(x)}}}}{{g{(x)}}^2}$

$f{(x)}$ and $g{(x)}$ are two differential functions in terms of $x$ and the differentiation of quotient of them with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, \Bigg(\dfrac{f{(x)}}{g{(x)}}\Bigg)}$

The derivative of quotient can be calculated by the quotient of subtraction of product of first function and derivative of second function from product of second function and derivative of first function by the square of second function.

$\dfrac{d}{dx}{\, \Bigg(\dfrac{f{(x)}}{g{(x)}}\Bigg)}$ $\,=\,$ $\dfrac{{g{(x)}}{\dfrac{d}{dx}{f{(x)}}}-{f{(x)}}{\dfrac{d}{dx}{g{(x)}}}}{{g{(x)}}^2}$

In differential calculus, the equality property is used for finding the differentiation of quotient of two functions.

The derivative of quotient rule is simply written as $u/v$ rule in calculus by taking $u = f{(x)}$ and $v = g{(x)}$.

$(1) \,\,\,$ $\dfrac{d}{dx}{\, \Big(\dfrac{u}{v}\Big)}$ $\,=\,$ $\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}$

$(2) \,\,\,$ ${d}{\, \Big(\dfrac{u}{v}\Big)}$ $\,=\,$ $\dfrac{v{du}-u{dv}}{v^2}$

Learn proof for derivative quotient rule by the definition of the derivative in limiting operation form.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved