Math Doubts

Derivative of secx formula


$\dfrac{d}{dx}{\, (\sec{x})} \,=\, \sec{x}\tan{x}$

The differentiation or derivative of secant function with respect to a variable is equal to the product of secant and tangent functions. This derivative formula is read as the derivative of $\sec{x}$ function with respect to $x$ is equal to the product of $\sec{x}$ and $\tan{x}$.


Assume $x$ is a variable, then the secant function is written as $\sec{x}$ in mathematical form as per trigonometry. The derivative of the secant function with respect to $x$ is written as the following mathematical form.

$\dfrac{d}{dx}{\, (\sec{x})}$

In mathematics, the differentiation of the $\sec{x}$ function with respect to $x$ can be written as $\dfrac{d{\,(\sec{x})}}{dx}$ and also simply written as ${(\sec{x})}’$.

Other form

The differentiation of the secant function can be written in terms of any variable.

$(1) \,\,\,$ $\dfrac{d}{dh}{\, (\sec{h})} \,=\, \sec{h}\tan{h}$

$(2) \,\,\,$ $\dfrac{d}{dw}{\, (\sec{w})} \,=\, \sec{w}\tan{w}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, (\sec{y})} \,=\, \sec{y}\tan{y}$


Learn how to prove the derivative of the secant function by first principle in differential calculus.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved