# Derivative of cscx formula

## Formula

$\dfrac{d}{dx}{\, (\csc{x})} \,=\, -\csc{x}\cot{x}$

The derivative or differentiation of cosecant function with respect to a variable is equal to the negative the product of cosecant and cotangent functions. This derivative rule is read as the derivative of $\csc{x}$ function with respect to $x$ is equal to the minus $\csc{x}$ times $\cot{x}$.

### Introduction

Take, $x$ as a variable, then according to trigonometry, the cosecant function is written as $\csc{x}$ or $\operatorname{cosec}{x}$ in mathematical form. The derivative of the cosecant function with respect to $x$ is written as the following mathematical form.

$\dfrac{d}{dx}{\, (\csc{x})} \,\,\,$ or $\,\,\, \dfrac{d}{dx}{\, (\operatorname{cosec}{x})}$

In differential calculus, the differentiation of the $\csc{x}$ function with respect to $x$ can be written as $\dfrac{d{\,(\csc{x})}}{dx}$ and also expressed as ${(\csc{x})}’$ simply.

#### Other form

The differentiation of the cosecant function formula can be written in the form of any variable.

$(1) \,\,\,$ $\dfrac{d}{dr}{\, (\csc{r})} \,=\, -\csc{r}\cot{r}$

$(2) \,\,\,$ $\dfrac{d}{dt}{\, (\csc{t})} \,=\, -\csc{t}\cot{t}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, (\csc{y})} \,=\, -\csc{y}\cot{y}$

### Proof

Learn how to derive the derivative of the cosecant function from first principle in differential calculus.

Latest Math Topics
Jul 07, 2020
Jun 25, 2020
Jun 18, 2020
Jun 11, 2020
Email subscription
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more