$\dfrac{d}{dx}{\, \cosh{x}}$ $\,=\,$ $\sinh{x}$

Let $x$ represents a variable, the hyperbolic cosine function is written as $\cosh{x}$ in mathematical form. The derivative of the hyperbolic cosine function with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, \cosh{(x)}}$

The differentiation of the hyperbolic cosine function can be written simply in mathematical form as $(\cosh{x})’$ in differential calculus.

The derivative of the hyperbolic cosine function is equal to the hyperbolic sine function.

$\implies$ $\dfrac{d}{dx}{\, \cosh{x}} \,=\, \sinh{x}$

The derivative of hyperbolic cosine function can be written in terms of any variable in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dg}{\, \cosh{(g)}}$ $\,=\,$ $\sinh{(g)}$

$(2) \,\,\,$ $\dfrac{d}{dv}{\, \cosh{(v)}}$ $\,=\,$ $\sinh{(v)}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \cosh{(y)}}$ $\,=\,$ $\sinh{(y)}$

Learn how to prove the derivative of hyperbolic cosine function by the first principle of differentiation in differential calculus.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.