$\dfrac{d}{dx}{\, \cosh{x}}$ $\,=\,$ $\sinh{x}$

Let $x$ represents a variable, the hyperbolic cosine function is written as $\cosh{x}$ in mathematical form. The derivative of the hyperbolic cosine function with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, \cosh{(x)}}$

The differentiation of the hyperbolic cosine function can be written simply in mathematical form as $(\cosh{x})’$ in differential calculus.

The derivative of the hyperbolic cosine function is equal to the hyperbolic sine function.

$\implies$ $\dfrac{d}{dx}{\, \cosh{x}} \,=\, \sinh{x}$

The derivative of hyperbolic cosine function can be written in terms of any variable in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dg}{\, \cosh{(g)}}$ $\,=\,$ $\sinh{(g)}$

$(2) \,\,\,$ $\dfrac{d}{dv}{\, \cosh{(v)}}$ $\,=\,$ $\sinh{(v)}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \cosh{(y)}}$ $\,=\,$ $\sinh{(y)}$

Learn how to prove the derivative of hyperbolic cosine function by the first principle of differentiation in differential calculus.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved