$\dfrac{d}{dx}{\, \cosh{x}}$ $\,=\,$ $\sinh{x}$

Let $x$ represents a variable, the hyperbolic cosine function is written as $\cosh{x}$ in mathematical form. The derivative of the hyperbolic cosine function with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, \cosh{(x)}}$

The differentiation of the hyperbolic cosine function can be written simply in mathematical form as $(\cosh{x})’$ in differential calculus.

The derivative of the hyperbolic cosine function is equal to the hyperbolic sine function.

$\implies$ $\dfrac{d}{dx}{\, \cosh{x}} \,=\, \sinh{x}$

The derivative of hyperbolic cosine function can be written in terms of any variable in differential calculus.

$(1) \,\,\,$ $\dfrac{d}{dg}{\, \cosh{(g)}}$ $\,=\,$ $\sinh{(g)}$

$(2) \,\,\,$ $\dfrac{d}{dv}{\, \cosh{(v)}}$ $\,=\,$ $\sinh{(v)}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \cosh{(y)}}$ $\,=\,$ $\sinh{(y)}$

Learn how to prove the derivative of hyperbolic cosine function by the first principle of differentiation in differential calculus.

Latest Math Topics

Nov 03, 2022

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved