Math Doubts

$\cot{(90^°)}$ value

The cot value when angle of a right triangle equals to $90^°$ is called cot of angle $90$ degrees and it is written as $\cot{(90^°)}$ mathematically in sexagesimal system.

$\cot{(90^°)} \,=\, 0$

The exact value of $\cot{(90^°)}$ is zero mathematically.

Alternative form

The $\cot{(90^°)}$ is written in different ways in alternative form. In other words, it is written as $\cot{\Big(\dfrac{\pi}{2}\Big)}$ in circular system and also written as $\cot{(100^g)}$ in centesimal system.

$(1) \,\,\,$ $\cot{\Big(\dfrac{\pi}{2}\Big)} \,=\, 0$

$(2) \,\,\,$ $\cot{(100^g)} \,=\, 0$

Proof

You learnt that the value of $\cot{\Big(\dfrac{\pi}{2}\Big)}$ is zero exactly. Now, it is time to learn how the value of $\cot{(100^g)}$ is zero exactly in trigonometry.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved