$\cos{2\theta}$ $\,=\,$ $\dfrac{1-\tan^2{\theta}}{1+\tan^2{\theta}}$

A mathematical identity that expresses the expansion of cosine of double angle in terms of tan squared of angle is called the cosine of double angle identity in tangent.

Let the theta be an angle of a right triangle. The square of tan of angle is written as $\tan^2{\theta}$ and the cosine of double angle is written as the $\cos{2\theta}$ in trigonometric mathematics.

The cosine of double angle is equal to the quotient of the subtraction of square of tangent from one by the sum of one and square of tan function.

$\cos{2\theta}$ $\,=\,$ $\dfrac{1-\tan^2{\theta}}{1+\tan^2{\theta}}$

It is called the cosine of double angle identity in terms of tangent function.

In trigonometry, the cos double angle identity can be used as a formula in two distinct cases.

It is used to expand the cosine of double angle functions as the quotient of the subtraction of tan squared of angle from one by the sum of one and tan squared of angle.

$\implies$ $\cos{2\theta}$ $\,=\,$ $\dfrac{1-\tan^2{\theta}}{1+\tan^2{\theta}}$

It is also used to simplify the quotient of the subtraction of tan squared of angle from one by the sum of one and tan squared of angle as the cosine of double angle.

$\implies$ $\dfrac{1-\tan^2{\theta}}{1+\tan^2{\theta}}$ $\,=\,$ $\cos{2\theta}$

In the cosine double angle formula, the angle can be represented by any symbol. Hence, it is also written in two other forms popularly.

$(1). \,\,\,\,\,\,$ $\cos{2x}$ $\,=\,$ $\dfrac{1-\tan^2{x}}{1+\tan^2{x}}$

$(2). \,\,\,\,\,\,$ $\cos{2A}$ $\,=\,$ $\dfrac{1-\tan^2{A}}{1+\tan^2{A}}$

Learn how to prove the cosine of double angle rule in terms of square of tan function in trigonometry.

Latest Math Topics

Apr 18, 2022

Apr 14, 2022

Apr 05, 2022

Mar 18, 2022

Mar 05, 2022

Latest Math Problems

Apr 06, 2022

Mar 22, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved