The horizontal and vertical distances of a point from the origin in two dimensional space are called the coordinates of a point.

The two dimensional Cartesian coordinate system is formed in geometry by the perpendicular bisection of two number lines. So, every point can be measured from the origin in two perpendicular directions on the basis of both number lines of coordinate axes.

Each distance of a point is called the coordinate of the point. Therefore, a point has two coordinates in two dimensional rectangular Cartesian coordinate system and the two coordinates of a point are expressed by two special names in geometric system.

The horizontal distance of a point from origin in two dimensional space is called the $x$-coordinate or abscissa.

The vertical distance of a point from origin in bi-dimensional space is called the $y$-coordinate or ordinate.

In two dimensional coordinate geometry, a point with its coordinates are simply expressed in ordered pair form.

The abscissa and ordinate of a point are written in a row inside parenthesis with comma separation but the $x$-coordinate should be first and then $y$-coordinate.

Let $A$ be a point in the coordinate plane. Its $x$ coordinate is $4$ and $y$ coordinates is $-3$.

The coordinates of the point $A$ are written in coordinate geometry as $(4, -3)$.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.