The minor of a three by three matrix with a sign is called the cofactor of an entry in a square of the order three.
Let’s consider a $3 \times 3$ matrix, denoted by $A$.
$A$ $\,=\,$ $\begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \\ \end{bmatrix}$
The cofactor of an element in a matrix of order $3$ is a product of the following factors.
$C_A$ $\,=\,$ $\begin{bmatrix} (-1)^{1+1} \times M_{11} & (-1)^{1+2} \times M_{12} & (-1)^{1+3} \times M_{13} \\ (-1)^{2+1} \times M_{21} & (-1)^{2+2} \times M_{22} & (-1)^{2+3} \times M_{23} \\ (-1)^{3+1} \times M_{31} & (-1)^{3+2} \times M_{32} & (-1)^{3+3} \times M_{33} \\ \end{bmatrix}$
$\therefore\,\,\,$ $C_A$ $\,=\,$ $\begin{bmatrix} M_{11} & -M_{12} & M_{13} \\ -M_{21} & M_{22} & -M_{23} \\ M_{31} & -M_{32} & M_{33} \\ \end{bmatrix}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved