A mathematical rule of changing base of a logarithmic term by expressing it as a quotient of two logarithmic terms is called change of base logarithmic rule in quotient form.

$\large \log_{b}{m} = \dfrac{\log_{d}{m}}{\log_{d}{b}}$

It is used as a formula to divide any logarithmic term as a quotient of two logarithmic terms which contain same base and this change of base formula is also used in reverse operation.

The change of base log formula in quotient form is derived in algebraic form on the basis of rules of exponents and also mathematical relation between exponents and logarithms.

$\log_{b}{m}$ and $\log_{d}{b}$ are two logarithmic terms and their values are $x$ and $y$ respectively.

$\log_{b}{m} = x$ and $\log_{d}{b} = y$

Express both logarithmic equations in exponential form as per the mathematical relation between exponent and logarithm.

$(1) \,\,\,$ $\log_{b}{m} = x \,\Longleftrightarrow\, m = b^{\displaystyle x}$

$(2) \,\,\,$ $\log_{d}{b} \,\,\, = y \,\Longleftrightarrow\, b = d^{\displaystyle y}$

Eliminate the base $b$ in the equation $m = b^{\displaystyle x}$ by substituting the $b = d^{\displaystyle y}$.

$\implies$ $m = {(d^{\displaystyle y})}^{\displaystyle x}$

Apply power of power exponents rule to simplify this exponential equation.

$\implies$ $m = d^{\displaystyle xy}$

Express this exponential equation in logarithmic form.

$m = d^{\displaystyle xy} \Longleftrightarrow xy = \log_{d}{m}$

$\implies$ $xy = \log_{d}{m}$

In fact, $x = \log_{b}{m}$ and $y = \log_{d}{b}$. So, replace them.

$\implies$ $\log_{b}{m} \times \log_{d}{b} = \log_{d}{m}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\log_{b}{m} = \dfrac{\log_{d}{m}}{\log_{d}{b}}$

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.