Math Doubts

Proof of ${(a-b)}^2$ formula in Algebraic Method


${(a-b)}^2 \,=\, a^2+b^2-2ab$


$a$ and $b$ are two literals and the subtraction of them is $a-b$. It is a binomial and the square of this binomial is represented as ${(a-b)}^2$. The square of the binomial $a-b$ can be expanded in terms of $a$ and $b$. It is called $a-b$ whole square formula in algebra.


Multiplying Binomials

The expansion of the square of the binomial $a-b$ can be obtained by multiplying the binomial $a-b$ by the same binomial. Apply the multiplication of the algebraic expressions to multiply them.

${(a-b)}^2$ $\,=\,$ $(a-b) \times (a-b)$

$\implies {(a-b)}^2$ $\,=\,$ $a \times (a-b) -b \times (a-b)$

$\implies {(a-b)}^2$ $\,=\,$ $a \times a + a \times (-b) -b \times a -b \times (-b)$

$\implies {(a-b)}^2$ $\,=\,$ $a^2-ab-ba+{(-b)}^2$


Identifying the Like terms

The product $a$ and $b$ is equal to the product of $b$ and $a$ mathematically. Therefore, $ab = ba$.

$\implies {(a-b)}^2$ $\,=\,$ $a^2-ab-ba+b^2$

$\implies {(a-b)}^2$ $\,=\,$ $a^2-ab-ab+b^2$


Adding Like terms

There are two $–ab$ terms in the expansion of the square of the subtraction of the terms and they can be added algebraically by the addition of algebraic terms method.

$\implies {(a-b)}^2$ $\,=\,$ $a^2-2ab+b^2$

$\,\,\, \therefore \,\,\,\,\,\, {(a-b)}^2$ $\,=\,$ $a^2+b^2-2ab$

Thus, the $a-b$ whole square identity is proved algebraically.

Therefore, it is proved that $a-b$ whole square is equal to $a$ squared plus $b$ squared plus minus two times product of $a$ and $b$.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved