Math Doubts

$a^3-b^3$ Identity

Formula

$a^3-b^3$ $\,=\,$ $(a-b)(a^2+b^2+ab)$

Introduction

Let $a$ and $b$ be two quantities in algebraic form.

  1. The subtraction of $b$ from the $a$ is written as $a-b$ in mathematical form.
  2. The subtraction of $b$ cube from $a$ cube is mathematically written as $a^3-b^3$.
  3. Add the sum of the squares of $a$ and $b$ to the product of $a$ and $b$, and their sum is written as $a^2+ab+b^2$.

As per the difference of cubes arithmetic property, the subtraction of $b$ cubed from $a$ cubed is equal to the product of the subtraction of $b$ from $a$ and the addition of sum of squares of $a$ and $b$ and the product of $a$ and $b$.

$\therefore\,\,\,$ $a^3-b^3$ $\,=\,$ $(a-b)$ $\times$ $(a^2+b^2+ab)$

Now, it is time to learn more about the $a$ cube minus $b$ cube algebraic identity.

Other form

The $a$ cube minus $b$ cube algebraic identity is alternatively written in mathematics as follows.

$x^3-y^3$ $\,=\,$ $(x-y)(x^2+y^2+xy)$

Uses

The $a$ cube minus $b$ cube algebraic identity is used in two different cases mainly.

  1. In basic mathematics, it is used as a formula to evaluate the difference of cubes of two quantities.
  2. It is also used as a formula to write the difference of two quantities in cube form as a product of two factors.

Proofs

The $a$ cube minus $b$ cube algebraic identity can be derived in two different methods.

Algebraic Method

Learn how to derive the $a$ cube minus $b$ cube formula by the algebraic identities.

Geometric Method

Learn how to prove the $a$ cubed minus $b$ cubed identity geometrically by the volume of a cube.

Verification

Assume that $a = 5$ and $b = 2$

$(1).\,\,$ $a-b$ $\,=\,$ $5-2$ $\,=\,$ $3$

$(2).\,\,$ $a^2+b^2+ab$ $\,=\,$ $5^2+2^2+5 \times 2$ $\,=\,$ $25+4+10$ $\,=\,$ $39$

$(3).\,\,$ $a^3-b^3$ $\,=\,$ $5^3-2^3$ $\,=\,$ $125-8$ $\,=\,$ $117$

Now, calculate the product of the $a-b$ and $a^2+b^2+ab$.

$\implies$ $(a-b)$ $\times$ $(a^2+b^2+ab)$ $\,=\,$ $3 \times 39$ $\,=\,$ $117$

It is calculated that the product of them is equal to $117$, and the difference of cubes of $a$ and $b$ is also equal to $117$.

$\,\,\,\therefore\,\,\,\,\,\,$ $a^3-b^3$ $\,=\,$ $117$ $\,=\,$ $(a-b)(a^2+b^2+ab)$

You too can verify the $a$ cube minus $b$ cube algebraic identity by taking any two numbers as explained above.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved