Math Doubts

Proof of $(x+a)(x+b)$ formula in Algebraic Method


${(x+a)}{(x+b)}$ $\,=\,$ $x^2+(a+b)x+ab$


The expansion of special product of binomials $x+a$ and $x+b$ can be derived in algebraic method by the multiplication of algebraic expressions.

Multiplication of Algebraic Expressions

Multiply each term of first binomial with the second binomial to perform multiplication of algebraic expressions.

${(x+a)}{(x+b)}$ $\,=\,$ $x \times (x+b)$ $+$ $a \times (x+b)$

Now, multiply each term of the second binomial by its multiplying factor.

$=\,$ $x \times x$ $+$ $x \times b$ $+$ $a \times x$ $+$ $a \times b$

Arrange the product of terms in an order

Now, write product of the terms in an order to obtain the special product of binomials $x+a$ and $x+b$.

$=\,$ $x^2$ $+$ $xb$ $+$ $ax$ $+$ $ab$

$=\,$ $x^2$ $+$ $bx$ $+$ $ax$ $+$ $ab$

$=\,$ $x^2$ $+$ $ax$ $+$ $bx$ $+$ $ab$

Simplify the expansion of special product

$x$ is a common multiplying factor in two terms of the expression. So, take it common from them to express the expansion of $(x+a)(x+b)$ formula in algebraically.

$\,\,\, \therefore \,\,\,\,\,\,$ ${(x+a)}{(x+b)}$ $\,=\,$ $x^2$ $+$ $(a+b)x$ $+$ $ab$

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved