Math Doubts

Subtraction Trigonometric identity of 1 and Cosine of Double angle


$\large 1-\cos 2\theta = 2\sin^2 \theta$


According to the expansion of the cosine of double angle in terms of sine of angle.

$\cos 2 \theta = 1-2\sin^2 \theta$

$\implies 2\sin^2 \theta = 1-\cos 2\theta$

$\therefore \,\,\,\,\,\,$ $1-\cos 2\theta = 2\sin^2 \theta$

It is proved that the subtraction of cosine of double angle from one is equal to twice the sine squared angle.

Other form

It is also written in other form in mathematics. If angle of the right angled triangle is $x$, then the subtraction of the cos of ange $2x$ can be transformed as the twice the square of the sine of angle $x$.

$1-\cos 2x = 2\sin^2 x$

Remember, the angle of right angled triangle can be denoted by any symbol in trigonometry but the conversion of this trigonometric identity is in same form.

Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more