$\tan{(18^°)} \,=\, \dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$

The value of tangent function when the angle is eighteen degrees in a right triangle, is called the tan of angle eighteen degrees.

According to the Sexagesimal system, the tan of eighteen degrees is written in mathematical form as $\tan{(18^°)}$.

The exact value of tangent of angle eighteen degrees can be written in the following fraction form.

$\tan{(18^°)} \,=\, \dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$

The value of tan of eighteen degrees is an irrational number and the following is the exact value of tan of $18$ degrees in decimal form.

$\tan{(18^°)} \,=\, 0.3249196962\ldots$

The irrational value of tan of eighteen degrees is considered as $0.3249$ approximately in mathematics.

$\implies$ $\tan{(18^°)} \,\approx\, 0.3249$

The $\tan{(18^°)}$ is written as $\tan{\Big(\dfrac{\pi}{10}\Big)}$ as per circular system, and also written as $\tan{(20^g)}$ as per Centesimal system.

$(1) \,\,\,$ $\tan{\Big(\dfrac{\pi}{10}\Big)}$ $\,=\,$ $\dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$ $\,=\,$ $0.3249196962\ldots$

$(2) \,\,\,$ $\tan{(20^g)}$ $\,=\,$ $\dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$ $\,=\,$ $0.3249196962\ldots$

The value of tan of eighteen degrees can be derived in mathematics in two different methods.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved