# $\tan{(18°)}$ value

$\tan{(18^°)} \,=\, \dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$

The value of tangent function when the angle is eighteen degrees in a right triangle, is called the tan of angle eighteen degrees.

## Introduction

According to the Sexagesimal system, the tan of eighteen degrees is written in mathematical form as $\tan{(18^°)}$.

### Fraction form

The exact value of tangent of angle eighteen degrees can be written in the following fraction form.

$\tan{(18^°)} \,=\, \dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$

### Decimal form

The value of tan of eighteen degrees is an irrational number and the following is the exact value of tan of $18$ degrees in decimal form.

$\tan{(18^°)} \,=\, 0.3249196962\ldots$

The irrational value of tan of eighteen degrees is considered as $0.3249$ approximately in mathematics.

$\implies$ $\tan{(18^°)} \,\approx\, 0.3249$

#### Other forms

The $\tan{(18^°)}$ is written as $\tan{\Big(\dfrac{\pi}{10}\Big)}$ as per circular system, and also written as $\tan{(20^g)}$ as per Centesimal system.

$(1) \,\,\,$ $\tan{\Big(\dfrac{\pi}{10}\Big)}$ $\,=\,$ $\dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$ $\,=\,$ $0.3249196962\ldots$

$(2) \,\,\,$ $\tan{(20^g)}$ $\,=\,$ $\dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$ $\,=\,$ $0.3249196962\ldots$

#### Proofs

The value of tan of eighteen degrees can be derived in mathematics in two different methods.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.