$\dfrac{x-3}{5}-2 = -1$ is an equation in terms of a variable $x$. In this algebraic equation, the power of the variable $x$ is one and no other variable is involved. So, it is a linear equation in one variable and it can be solved systematically by the inverse operations method.
$\dfrac{x-3}{5}-2 = -1$
In left-hand side of the equation, the two terms are connected by subtraction. It is essential to eliminate $-2$ from this expression and it can be done by adding $2$ to both sides of the equation.
$\implies$ $\dfrac{x-3}{5}-2+2$ $=$ $-1+2$
$\implies$ $\require{cancel} \dfrac{x-3}{5}-\cancel{2}+\cancel{2}$ $=$ $1$
$\implies$ $\dfrac{x-3}{5} = 1$
$\dfrac{x-3}{5} = 1$
The number $5$ is dividing the algebraic expression $x-3$ in the left-hand side of the equation. It can be eliminated from this expression by multiplying both sides of the equation by $5$.
$\implies$ $5 \times \Bigg[\dfrac{x-3}{5}\Bigg]$ $=$ $5 \times 1$
$\implies$ $\dfrac{5(x-3)}{5}$ $=$ $5$
$\implies$ $\require{cancel} \dfrac{\cancel{5}(x-3)}{\cancel{5}}$ $=$ $5$
$\implies$ $x-3 = 5$
$x-3 = 5$
Two terms are connected by subtraction in the left-hand side of the equation. For solving $x$, the number $-3$ should be eliminated from this expression. It can be done by adding $3$ to both sides of the linear equation.
$\implies$ $x-3+3 = 5+3$
$\implies$ $x-3+3 = 8$
$\,\,\, \therefore \,\,\,\,\,\,$ $x = 8$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved