$\dfrac{x-3}{5}-2 = -1$ is an equation in terms of a variable $x$. In this algebraic equation, the power of the variable $x$ is one and no other variable is involved. So, it is a linear equation in one variable and it can be solved systematically by the inverse operations method.

$\dfrac{x-3}{5}-2 = -1$

In left-hand side of the equation, the two terms are connected by subtraction. It is essential to eliminate $-2$ from this expression and it can be done by adding $2$ to both sides of the equation.

$\implies$ $\dfrac{x-3}{5}-2+2$ $=$ $-1+2$

$\implies$ $\require{cancel} \dfrac{x-3}{5}-\cancel{2}+\cancel{2}$ $=$ $1$

$\implies$ $\dfrac{x-3}{5} = 1$

$\dfrac{x-3}{5} = 1$

The number $5$ is dividing the algebraic expression $x-3$ in the left-hand side of the equation. It can be eliminated from this expression by multiplying both sides of the equation by $5$.

$\implies$ $5 \times \Bigg[\dfrac{x-3}{5}\Bigg]$ $=$ $5 \times 1$

$\implies$ $\dfrac{5(x-3)}{5}$ $=$ $5$

$\implies$ $\require{cancel} \dfrac{\cancel{5}(x-3)}{\cancel{5}}$ $=$ $5$

$\implies$ $x-3 = 5$

$x-3 = 5$

Two terms are connected by subtraction in the left-hand side of the equation. For solving $x$, the number $-3$ should be eliminated from this expression. It can be done by adding $3$ to both sides of the linear equation.

$\implies$ $x-3+3 = 5+3$

$\implies$ $x-3+3 = 8$

$\,\,\, \therefore \,\,\,\,\,\,$ $x = 8$

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved