$x$ is a literal number and it is involved in logarithmic and algebraic systems to form an equation.

$\dfrac{\log_{2} {(9-2^{\displaystyle x})}}{3-x} \,=\, 1$

It is required to find the solution of this equation to know the value of the $x$.

01

Apply cross multiplication rule to express the equation in simple form.

$\implies$ $\log_{2} {(9-2^{\displaystyle x})}$ $\,=\,$ $1 \times (3-x)$

$\implies$ $\log_{2} {(9-2^{\displaystyle x})}$ $\,=\,$ $3-x$

02

Eliminate logarithmic form from the equation and it can be done by using the relation between logarithms and exponential notation.

$\implies$ $9-2^{\displaystyle x} \,=\, 2^{\displaystyle 3-x}$

$\implies$ $9-2^{\displaystyle x} \,=\, 2^{\displaystyle 3} \times 2^{\displaystyle -x}$

$\implies$ $9-2^{\displaystyle x} \,=\, 8 \times 2^{\displaystyle -x}$

$\implies$ $9-2^{\displaystyle x} \,=\, \dfrac{8}{2^{\displaystyle x}}$

$\implies$ $2^{\displaystyle x}(9-2^{\displaystyle x}) \,=\, 8$

$\implies$ $9(2^{\displaystyle x})-{(2^{\displaystyle x})}^2 \,=\, 8$

$\implies$ $0 \,=\, {(2^{\displaystyle x})}^2 -9(2^{\displaystyle x}) + 8$

$\implies$ ${(2^{\displaystyle x})}^2 -9(2^{\displaystyle x}) + 8 \,=\, 0$

03

The equation is in the form of quadratic equation. It can be solved by using the methods of the solving quadratic equations. Take $v = 2^{\displaystyle x}$ to avoid confusion in solving the quadratic equation.

$\implies$ $v^2-9v+8 \,=\, 0$

The quadratic equation can be solved by using the factoring method.

$\implies$ $v^2-8v-v+8 \,=\, 0$

$\implies$ $v(v-8)-1(v-8) \,=\, 0$

$\implies$ $(v-1)(v-8) \,=\, 0$

Therefore, $v \,=\, 1$ and $v \,=\, 8$

04

As per our assumption, the value of literal $v$ is $2^{\displaystyle x}$. So, replace it to obtain the value of the $x$.

$2^{\displaystyle x} = 1$

$\implies 2^{\displaystyle x} = 2^0$

$\implies x = 0$

$2^{\displaystyle x} = 8$

$\implies 2^{\displaystyle x} = 2^3$

$\implies x = 3$

The two cases have given two solutions to the logarithmic equation. Therefore, the values of $x$ are $0$ and $3$.

05

Now, check the logarithmic equation at $x$ is equal to $0$ and also $x$ is equal to $3$.

$\dfrac{\log_{2} {(9-2^{\displaystyle 0})}}{3-0}$

$= \dfrac{\log_{2} {(9-1)}}{3}$

$= \dfrac{\log_{2} 8}{3}$

$= \dfrac{\log_{2} 2^3}{3}$

$= \dfrac{3 \log_{2} 2}{3}$

$= \require{cancel} \dfrac{\cancel{3} \log_{2} 2}{\cancel{3}}$

$= \log_{2} 2$

Apply, the logarithm of base rule to obtain the value of the expression.

$= 1$

The value of the left hand side expression is equal to $1$ and it is the value of the right hand side of the equation. Hence, the value of $x$ equals to $0$ is true solution of the equation.

$\dfrac{\log_{2} {(9-2^{\displaystyle 3})}}{3-3}$

$= \dfrac{\log_{2} {(9-8)}}{0}$

$= \dfrac{\log_{2} {(1)}}{0}$

$= \dfrac{0}{0}$

Therefore, the value of left hand side expression is indeterminate at $x$ is equal to $3$. Hence, $x \ne 3$ but $x = 0$ is only the solution of the logarithmic equation and it is required solution for this logarithmic problem mathematically.

Latest Math Topics

Jun 05, 2023

May 21, 2023

May 16, 2023

May 10, 2023

May 03, 2023

Latest Math Problems

May 09, 2023

A best free mathematics education website that helps students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved