Math Doubts

Solve $9^{\displaystyle x+4}$ $\,=\,$ $3^{\displaystyle 2} \times 27^{\displaystyle x+1}$

In this problem, it is given that the number $9$ raised to the power of $x$ plus $4$ is equal to $3$ squared times $27$ raised to the power of $x$ plus $1$.

$9^{\displaystyle x+4}$ $\,=\,$ $3^{\displaystyle 2} \times 27^{\displaystyle x+1}$

The value of $x$ has to evaluate by solving the given exponential equation in this exponential equation problem.

Basic method

Split each exponential function

There is an exponential function in terms of $x$ on the left-hand side of the equation. Similarly, there is another exponential function in terms of $x$ on the right-hand side of the equation. The two exponential functions are formed by the sum of a variable $x$ and a number. For solving the value of $x$, both exponential functions should be split. It can be done by the product rule of exponents.

$(1).\,\,\,$ $9^{\displaystyle x+4}$ $\,=\,$ $9^{\displaystyle x} \times 9^{\displaystyle 4}$

$(2).\,\,\,$ $27^{\displaystyle x+1}$ $\,=\,$ $27^{\displaystyle x} \times 27^{\displaystyle 1}$

Now, substitute them in the given exponential equation.

$\implies$ $9^{\displaystyle x} \times 9^{\displaystyle 4}$ $\,=\,$ $3^{\displaystyle 2} \times 27^{\displaystyle x} \times 27^{\displaystyle 1}$

$\implies$ $9^{\displaystyle x} \times 9^{\displaystyle 4}$ $\,=\,$ $3^{\displaystyle 2} \times 27^{\displaystyle x} \times 27$

d

On the left-hand side of the equation, the bases of both factors are $9$. On the right-hand side of the equation, the base of one factor is $3$ and the bases of the remaining factors are $27$. By factoring, the quantities can be expressed in exponential form with the base of $3$.

$(1).\,\,\,$ $9$ $\,=\,$ $3 \times 3$ $\,=\,$ $3^{\displaystyle 2}$

$(2).\,\,\,$ $27$ $\,=\,$ $3 \times 3 \times 3$ $\,=\,$ $3^{\displaystyle 3}$

Now, substitute them in the exponential equation.

$\implies$ $\Big(3^{\displaystyle 2}\Big)^{\displaystyle x} \times \Big(3^{\displaystyle 2}\Big)^{\displaystyle 4}$ $\,=\,$ $3^{\displaystyle 2} \times \Big(3^{\displaystyle 3}\Big)^{\displaystyle x} \times 3^{\displaystyle 3}$

The power of an exponential form quantity can be simplified by the power rule of exponents.

$\implies$ $\Big(3^{\displaystyle 2 \times x}\Big) \times \Big(3^{\displaystyle 2 \times 4}\Big)$ $\,=\,$ $3^{\displaystyle 2} \times \Big(3^{\displaystyle 3 \times x}\Big) \times 3^{\displaystyle 3}$

$\implies$ $3^{\displaystyle 2x} \times 3^{\displaystyle 8}$ $\,=\,$ $3^{\displaystyle 2} \times 3^{\displaystyle 3x} \times 3^{\displaystyle 3}$

Simplify the exponential equation

$\implies$ $3^{\displaystyle 2x} \times 3^{\displaystyle 8}$ $\,=\,$ $3^{\displaystyle 2} \times 3^{\displaystyle 3} \times 3^{\displaystyle 3x}$

$\implies$ $3^{\displaystyle 2x+8}$ $\,=\,$ $3^{\displaystyle 2+3+3x}$

$\implies$ $3^{\displaystyle 2x+8}$ $\,=\,$ $3^{\displaystyle 5+3x}$

$\implies$ $2x+8$ $\,=\,$ $5+3x$

$\implies$ $5+3x$ $\,=\,$ $2x+8$

$\implies$ $3x-2x$ $\,=\,$ $8-5$

$\,\,\,\therefore\,\,\,\,\,\,$ $x \,=\, 3$

Shortcut method

$9^{\displaystyle x+4}$ $\,=\,$ $3^{\displaystyle 2} \times 27^{\displaystyle x+1}$

$\Big(3^{\displaystyle 2}\Big)^{\displaystyle x+4}$ $\,=\,$ $3^{\displaystyle 2} \times \Big(3^{\displaystyle 3}\Big)^{\displaystyle x+1}$

$3^{\displaystyle 2 \times (x+4)}$ $\,=\,$ $3^{\displaystyle 2} \times 3^{\displaystyle 3 \times (x+1)}$

$3^{\displaystyle 2 \times x+2 \times 4}$ $\,=\,$ $3^{\displaystyle 2} \times 3^{\displaystyle 3 \times x+3 \times 1}$

$3^{\displaystyle 2x+8}$ $\,=\,$ $3^{\displaystyle 2} \times 3^{\displaystyle 3x+3}$

$3^{\displaystyle 2x+8}$ $\,=\,$ $3^{\displaystyle 2+3x+3}$

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved