Math Doubts

Standard form of a Polynomial in a single variable

General form

$a_{n}\,x^{n}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $\cdots$ $+$ $a_{2}\,x^2$ $+$ $a_{1}\,x$ $+$ $a_{0}$

Introduction

Let $x$ be a variable or an indeterminate value. Suppose, $a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ $a_{n-2},$ $a_{n-1}$ and $a_{n}$ are the constants. The addition of the products of a constant and a non-negative integer exponentiation of a variable $x$ forms an expression as follows.

$a_{n}\,x^{n}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $\cdots$ $+$ $a_{2}\,x^2$ $+$ $a_{1}\,x$ $+$ $a_{0}$

This mathematical expression is called the standard form or general form a polynomial in one variable. It is also written as follows in ascending order

$a_{0}$ $+$ $a_{1}\,x$ $+$ $a_{2}\,x^2$ $+$ $\cdots$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n}\,x^{n}$

Let’s learn some more about the general form of polynomial in single variable.

Terms

The single variable polynomial consists of several expressions and a plus sign connects every two expressions in algebraic form. Each expression is called a term of the polynomial.

$a_{n}\,x^{n},$ $a_{n-1}\,x^{n-1},$ $a_{n-2}\,x^{n-2},$ $\cdots$ $a_{2}\,x^2,$ $a_{1}\,x$ and $a_{0}$ are the expressions in the polynomial and all expressions in the polynomial are called the terms of the polynomial in one variable.

Coefficients

$a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ $a_{n-2},$ $a_{n-1}$ and $a_{n}$ are constants, they are multiplied by the factors in variable form $1,$ $x,$ $x^2,$ $\cdots$ $x^{n-2},$ $x^{n-1}$ and $x^{n}$ respectively. Hence, $a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ $a_{n-2},$ $a_{n-1}$ and $a_{n}$ are called the coefficients of them.

Simple form

It is not convenient to write the polynomial in either ascending or descending order.

$a_{n}\,x^{n}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $\cdots$ $+$ $a_{2}\,x^2$ $+$ $a_{1}\,x$ $+$ $a_{0}$

$a_{0}$ $+$ $a_{1}\,x$ $+$ $a_{2}\,x^2$ $+$ $\cdots$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n}\,x^{n}$

instead of them, it is simply written in summation notation.

$\displaystyle \sum_{\displaystyle k = 0}^{\displaystyle n}{a_{k}\,x^{k}}$

In this case, $k$ is a constant and $k \,=\, 0, 1, 2, 3 \cdots n$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved