$a_{n}\,x^{n}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $\cdots$ $+$ $a_{2}\,x^2$ $+$ $a_{1}\,x$ $+$ $a_{0}$

Let $x$ be a variable or an indeterminate value. Suppose, $a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ $a_{n-2},$ $a_{n-1}$ and $a_{n}$ are the constants. The addition of the products of a constant and a non-negative integer exponentiation of a variable $x$ forms an expression as follows.

$a_{n}\,x^{n}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $\cdots$ $+$ $a_{2}\,x^2$ $+$ $a_{1}\,x$ $+$ $a_{0}$

This mathematical expression is called the standard form or general form a polynomial in one variable. It is also written as follows in ascending order

$a_{0}$ $+$ $a_{1}\,x$ $+$ $a_{2}\,x^2$ $+$ $\cdots$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n}\,x^{n}$

Let’s learn some more about the general form of polynomial in single variable.

The single variable polynomial consists of several expressions and a plus sign connects every two expressions in algebraic form. Each expression is called a term of the polynomial.

$a_{n}\,x^{n},$ $a_{n-1}\,x^{n-1},$ $a_{n-2}\,x^{n-2},$ $\cdots$ $a_{2}\,x^2,$ $a_{1}\,x$ and $a_{0}$ are the expressions in the polynomial and all expressions in the polynomial are called the terms of the polynomial in one variable.

$a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ $a_{n-2},$ $a_{n-1}$ and $a_{n}$ are constants, they are multiplied by the factors in variable form $1,$ $x,$ $x^2,$ $\cdots$ $x^{n-2},$ $x^{n-1}$ and $x^{n}$ respectively. Hence, $a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ $a_{n-2},$ $a_{n-1}$ and $a_{n}$ are called the coefficients of them.

It is not convenient to write the polynomial in either ascending or descending order.

$a_{n}\,x^{n}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $\cdots$ $+$ $a_{2}\,x^2$ $+$ $a_{1}\,x$ $+$ $a_{0}$

$a_{0}$ $+$ $a_{1}\,x$ $+$ $a_{2}\,x^2$ $+$ $\cdots$ $+$ $a_{n-2}\,x^{n-2}$ $+$ $a_{n-1}\,x^{n-1}$ $+$ $a_{n}\,x^{n}$

instead of them, it is simply written in summation notation.

$\displaystyle \sum_{\displaystyle k = 0}^{\displaystyle n}{a_{k}\,x^{k}}$

In this case, $k$ is a constant and $k \,=\, 0, 1, 2, 3 \cdots n$

Latest Math Topics

Mar 21, 2023

Feb 25, 2023

Feb 17, 2023

Feb 10, 2023

Latest Math Problems

Mar 03, 2023

Mar 01, 2023

Feb 27, 2023

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved