$\csc{\theta} \,=\, \dfrac{1}{\sin{\theta}}$

Sine is a ratio of lengths of opposite side to hypotenuse and the cosecant is a ratio of lengths of hypotenuse to opposite side. The sine and cosecant functions are mutually reciprocals. Therefore, the reciprocal of sin of angle is equals to cosecant of angle.

$\Delta RPQ$ is a right triangle and its angle is theta.

Firstly, write sin of angle theta ($\sin{\theta}$) in its ratio form.

$\sin{\theta} \,=\, \dfrac{QR}{PQ}$

Similarly, write the cosecant of angle theta ($\csc{\theta}$ or $\operatorname{cosec}{\theta}$) in its ratio form.

$\csc{\theta} \,=\, \dfrac{PQ}{QR}$

The value of cosecant function in its ratio form can be written in reciprocal form to prove the relation between sine and cosecant functions mathematically.

$\implies \csc{\theta} \,=\, \dfrac{1}{\dfrac{QR}{PQ}}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\csc{\theta} \,=\, \dfrac{1}{\sin{\theta}}$

Therefore, it is proved that the reciprocal of sin function is equal to cosecant function. It will be used as a formula in trigonometric mathematics.

The angle of right triangle can be represented by any symbol and the reciprocal identity of sin function should be written in the respective angle.

For example, if $x$ is angle of right triangle, then

$\csc{x} \,=\, \dfrac{1}{\sin{x}}$

Similarly, if $A$ is angle of right triangle, then

$\csc{A} \,=\, \dfrac{1}{\sin{A}}$

The reciprocal identity of sin function is written in this form but the only changing factor is angle of right triangle.

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.