The number two is a second natural number and let’s find whether the natural number $2$ is a prime number or not by the fundamental definition of a prime number.

According to the definition of a prime number, let’s observe what happens when the natural number $2$ is divided by both one and itself.

Firstly, let’s divide the natural number $2$ by the natural number $1$.

$2 \div 1$

$\implies$ $\dfrac{2}{1} \,=\, 2$

The natural number $2$ is completely divided by the $1$. So, the quotient of $2$ divided by $1$ is $2$. It clears that there is a chance for the natural number $2$ to become a prime number.

Now, let’s divide the natural number $2$ by the same natural number.

$2 \div 2$

$\implies$ $\dfrac{2}{2} \,=\, 1$

The natural number $2$ is completely divided by itself and the quotient of $2$ divided by $2$ is equal to $1$.

- The number $2$ is completely divided by the number $1$.
- The number $2$ is also completely divided by the same number.

It clears that the number $2$ is divisible only by one and itself. Therefore, the number $2$ can only be expressed as a product of one and itself.

$\implies$ $2$ $\,=\,$ $1 \times 2$

The number $2$ has only two factors and they are $1$ and $2$. It proves that the number $2$ is a prime number and it is a first prime number in the natural numbers.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved