Math Doubts

Inverse Hyperbolic Tangent function

The inverse form of the hyperbolic tangent function is called the inverse hyperbolic tangent function.

Formula

$\large \tanh^{-1}{x} \,=\, \dfrac{1}{2} \, \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

The hyperbolic tangent function is defined in mathematics as the ratio of subtraction to summation of negative and positive natural exponential functions. The inverse form of the hyperbolic tangent function is in logarithmic function form and it can be derived from the hyperbolic tangent function in mathematics.

Proof

$x$ and $y$ are two literals. The value of $x$ is equal to the hyperbolic tangent of $y$.

$x = \tanh{y}$

Therefore, the value of $y$ is equal to the inverse hyperbolic tangent of $x$.

$y = \tanh^{-1}{x}$

So, the relation between them can be written in mathematics as follows.

$x = \tanh{y} \,\,\Leftrightarrow \,\, y = \tanh^{-1}{x}$

01.

Transforming Hyperbolic function in exponential form

Express hyperbolic tangent of $y$ in terms of natural exponential functions.

$x = \dfrac{e^y-e^{-y}}{e^y+e^{-y}}$

02.

Simplification of the equation

Simplify the exponential algebraic equation to express the equation in terms of $x$ and also to eliminate the $y$ from the equation.

$\implies$ $x(e^y+e^{-y}) = e^y-e^{-y}$

$\implies$ $xe^y+xe^{-y} = e^y-e^{-y}$

$\implies$ $0 = e^y-e^{-y}-xe^y-xe^{-y}$

$\implies$ $e^y-e^{-y}-xe^y-xe^{-y} = 0$

$\implies$ $e^y-xe^y-e^{-y}-xe^{-y} = 0$

$\implies$ $(1-x)e^y-(1+x)e^{-y} = 0$

$\implies$ $(1-x)e^y = (1+x)e^{-y}$

$\implies$ $(1-x)e^y = \dfrac{1+x}{e^y}$

$\implies$ $(1-x)e^y \times e^y = 1+x$

$\implies$ $(1-x)e^{2y} = 1+x$

$\implies$ $e^{2y} = \dfrac{1+x}{1-x}$

03.

Eliminating the y from equation

Eliminate $y$ from this algebraic exponential equation. It is possible by applying natural logarithm both sides of the equation.

$\implies$ $\log_{e}{e^{2y}} = \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

$\implies$ $2y \times \log_{e}{e} = \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

$\implies$ $2y \times 1 = \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

$\implies$ $2y = \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

$\implies$ $y = \dfrac{1}{2} \, \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\tanh^{-1}{x} = \dfrac{1}{2} \, \log_{e}{\Bigg(\dfrac{1+x}{1-x}\Bigg)}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved