Math Doubts

Find $\dfrac{d}{dx} \sin(x^2)$

Actually, $\sin{x}$ is a trigonometric function and $x^2$ is an exponential function in algebraic form. They both formed a special function by the composition of them.

Problem in finding Differentiation of function

According to the derivative of $\sin{x}$ with respect to $x$ formula, the derivative of $\sin{x}$ with respect to $x$ is equal to $\cos{x}$.

$\dfrac{d}{dx}{\sin{x}} = \cos{x}$

This formula cannot be applied directly to this derivative problem due to the angle difference of the trigonometric function.

Apply Chain Rule

Chain rule is only one solution to deal functions which are formed by the composition of two or more functions.

$\dfrac{d}{dx}{\sin{(x^2)}}$

Take $y = x^2$, then $\dfrac{dy}{dx} = 2x$, therefore $dy = 2xdx$ and then $dx = \dfrac{dy}{2x}$. Now, transform the whole differential function by this data.

$= \dfrac{d}{\dfrac{dy}{2x}}{\sin{y}}$

$= 2x\dfrac{d}{dy}{\sin{y}}$

Differentiate the function

Now, differentiate the sine function with respect to $y$.

$= 2x\cos{y}$

Eliminate the y terms by its replacement

Actually, $y = x^2$. So, replace the term $y$ by its replacement for obtaining the required result of this differentiation problem in calculus.

$\therefore \,\,\,\,\,\, \dfrac{d}{dx}{\sin{(x^2)}} = 2x\cos{x^2}$



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more