A method of factoring a polynomial as a product of two factors by splitting the middle term of a quadratic form basis expression is called the factorization (or factorisation) of a mathematical expression by splitting the middle term.

An expression is in the form of a trinomial $ax^2+bx+c$. In some cases, it can be factored by splitting the middle term and the process is called the factorisation (or factorization) by splitting the middle term.

It is essential to have knowledge on the factoring by grouping to understand the factorization by splitting the middle term.

The quadratic expression can be factored by the following steps.

- Write the polynomial in either ascending or descending order but it is always preferable to express the trinomial in descending order.
- Find the product of first and last terms with their signs.
- Try to split the middle term as either sum or difference of two terms but their product should be equal to the product of the first and last terms. Otherwise, it is not possible to factorize the trinomial.
- Factorize the polynomial by grouping.

Factorize $6x+x^2+8$

The given algebraic expression is already in descending order. So, need to do anything with the given polynomial.

$x^2+6x+8$

Find the product of first and last terms of the expression.

$x^2 \times 8 \,=\, 8x^2$

Try to split the middle term $6x$ as two terms but their product should be equal to $8x^2$.

$2x+4x = 6x$ and $(2x)(4x) = 8x^2$.

$= \,\,\,$ $x^2+2x+4x+8$

Now, group the terms to factorize the algebraic expression by grouping.

$= \,\,\,$ $(x^2+2x)+(4x+8)$

$= \,\,\,$ $x(x+2)+4(x+2)$

$= \,\,\,$ $(x+2)(x+4)$

Therefore, the given trinomial $x^2+6x+8$ is factored as $(x+2)(x+4)$ by splitting the middle of the given expression.

The list of questions with solutions to learn how to factorise an expression by splitting the middle term.

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Sep 30, 2022

Jul 29, 2022

Jul 17, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved