# Evaluate $\displaystyle \large \lim_{x \,\to\, 7}{\normalsize (4x)}$

The limit of the simple expression $4x$ has to calculate as $x$ approaches $7$ in this problem and this problem is useful for the beginners. The limit of the function $4x$ can be evaluated by substituting any value that is closer to $7$.

You can take any value that is closer to $7$, for example $x = 6.9917$. There are two reasons for this.

1. The value of $6.9917$ is slightly less than $7$ but its approximate value is equal to $7$. In other words, $6.9917 \approx 7$.
2. The difference between $7$ and $6.9917$ is also approximately small and negligible. In other words, $7-6.9917 = 0.0083$ and $0.0083 \approx 0$.

The above two points have cleared that the value of $6.9917$ closer to $7$ and substitute it to evaluate the limit of the function as $x$ approaches $7$.

$L \,=\, \displaystyle \large \lim_{x \,\to\, 7}{\normalsize (4x)}$

$\implies$ $L \,=\, 4(6.9917)$

$\implies$ $L \,=\, 4 \times 6.9917$

$\implies$ $L \,=\, 27.9668$

$\,\,\, \therefore \,\,\,\,\,\,$ $L \,\approx\, 28$

Therefore, the limit of the function $4x$ is equal to $28$ as $x$ approaches $7$.

It can also be obtained directly by substituting $x = 7$ in the given function.

$=\,\,\, 4(7)$

$=\,\,\, 4 \times 7$

$=\,\,\, 28$

Therefore, the limit of the function $4x$ as $x$ tends to $7$ is considered as the value of the function $4x$ at $x = 7$ in calculus.

$L \,=\, \displaystyle \large \lim_{x \,\to\, 7}{\normalsize (4x)}$

$\implies$ $L \,=\, 4(7)$

$\implies$ $L \,=\, 4 \times 7$

$\,\,\, \therefore \,\,\,\,\,\,$ $L \,=\, 28$

Theoretically, it is wrong to consider that the limit of the function $4x$ as $x$ approaches $7$ is equal to the value of the function at $x = 7$. However, it is acceptable to consider that they both are equal due to the negligible difference between the input values and also negligible difference between their corresponding values of the function.

Latest Math Topics
Jun 26, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.