In the given matrix problem, two square matrices of the order $2$ are involved in multiplication.
The multiplication of the $2 \times 2$ matrices is expressed in mathematics as follows.
${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$
Now, let’s start the process for multiplying the matrices of the order $2 \times 2$.
Multiply the first column’s entries of the second matrix $6$ and $3$ by the first row’s elements of the first matrix $-2$ and $3$ respectively. After that, add the products of them to evaluate the first row first column for the multiplication of the given two matrices.
$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} (-2) \times 6+3 \times 3 & \, \\ \, & \, \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -12+9 & \, \\ \, & \, \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & \, \\ \, & \, \\ \end{bmatrix}}$
Similarly, multiply the elements in the second column of the second matrix $4$ and $-1$ by the entries in the first row of the first matrix $-2$ and $3$ respectively. Now, add the products of them to find the element in the first row first column for the multiplication of the given two by two square matrices.
$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & (-2) \times 4+3 \times (-1) \\ \, & \, \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -8-3 \\ \, & \, \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ \, & \, \\ \end{bmatrix}}$
Multiply the elements in the first column of the second matrix $6$ and $3$ by the entries in the second row of the first matrix $-1$ and $4$ respectively. Later, find the sum of the products of them to calculate the entry in the second row first column for the multiplication of the given second order square matrices.
$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ (-1) \times 6+4 \times 3 & \, \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ -6+12 & \, \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & \, \\ \end{bmatrix}}$
In the same way, multiply the entries in the second column of the second matrix $4$ and $-1$ by the elements in the second row of the first matrix $-1$ and $4$ respectively. Finally, calculate the products of them and then add them for evaluating the element in the second row second column for the multiplication of the matrices of the order $2 \times 2$.
$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & (-1) \times 4+4 \times (-1) \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & -4-4 \\ \end{bmatrix}}$
$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & -8 \\ \end{bmatrix}}$
Thus, the matrix ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$ can be multiplied by the matrix ${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ in the mathematics.
$\,\,\,\therefore\,\,\,\,\,\,$ ${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & -8 \\ \end{bmatrix}}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved