Math Doubts

Evaluate ${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$

In the given matrix problem, two square matrices of the order $2$ are involved in multiplication.

  1. In one matrix, the entries in first row are $-2$ and $3$, and the elements in second row are $-1$ and $4$.
  2. In the second matrix, the elements in the first column are $6$ and $3$, and the entries in the second column are $4$ and $-1$.

The multiplication of the $2 \times 2$ matrices is expressed in mathematics as follows.

${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$

Now, let’s start the process for multiplying the matrices of the order $2 \times 2$.

Multiply the entries in columns by the elements of first row

Multiply the first column’s entries of the second matrix $6$ and $3$ by the first row’s elements of the first matrix $-2$ and $3$ respectively. After that, add the products of them to evaluate the first row first column for the multiplication of the given two matrices.

$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} (-2) \times 6+3 \times 3 & \, \\ \, & \, \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -12+9 & \, \\ \, & \, \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & \, \\ \, & \, \\ \end{bmatrix}}$

Similarly, multiply the elements in the second column of the second matrix $4$ and $-1$ by the entries in the first row of the first matrix $-2$ and $3$ respectively. Now, add the products of them to find the element in the first row first column for the multiplication of the given two by two square matrices.

$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & (-2) \times 4+3 \times (-1) \\ \, & \, \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -8-3 \\ \, & \, \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} \color{red} -2 & \color{red} 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ \, & \, \\ \end{bmatrix}}$

Multiply the entries in columns by the elements of second row

Multiply the elements in the first column of the second matrix $6$ and $3$ by the entries in the second row of the first matrix $-1$ and $4$ respectively. Later, find the sum of the products of them to calculate the entry in the second row first column for the multiplication of the given second order square matrices.

$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ (-1) \times 6+4 \times 3 & \, \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ -6+12 & \, \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} \color{blue} 6 & 4 \\ \color{blue} 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & \, \\ \end{bmatrix}}$

In the same way, multiply the entries in the second column of the second matrix $4$ and $-1$ by the elements in the second row of the first matrix $-1$ and $4$ respectively. Finally, calculate the products of them and then add them for evaluating the element in the second row second column for the multiplication of the matrices of the order $2 \times 2$.

$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & (-1) \times 4+4 \times (-1) \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & -4-4 \\ \end{bmatrix}}$

$\implies$ ${\begin{bmatrix} -2 & 3 \\ \color{red} -1 & \color{red} 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & \color{blue} 4 \\ 3 & \color{blue} -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & -8 \\ \end{bmatrix}}$

Thus, the matrix ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$ can be multiplied by the matrix ${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ in the mathematics.

$\,\,\,\therefore\,\,\,\,\,\,$ ${\begin{bmatrix} -2 & 3 \\ -1 & 4 \\ \end{bmatrix}}$ $\times$ ${\begin{bmatrix} 6 & 4 \\ 3 & -1 \\ \end{bmatrix}}$ $\,=\,$ ${\begin{bmatrix} -3 & -11 \\ 6 & -8 \\ \end{bmatrix}}$

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved