$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{\sqrt{9+5x+4x^2}-3}{x}$
Substitute $x$ is equal to zero to find the value of limit of the function.
$= \,\,\,$ $\dfrac{\sqrt{9+5(0)+4{(0)}^2}-3}{0}$
$= \,\,\,$ $\dfrac{\sqrt{9+0+0}-3}{0}$
$= \,\,\,$ $\dfrac{\sqrt{9}-3}{0}$
$= \,\,\,$ $\dfrac{3-3}{0}$
$= \,\,\,$ $\dfrac{0}{0}$
The value of the algebraic function as the limit $x$ approaches zero is indeterminate. So, the value of this function cannot be evaluated in this method.
The algebraic expression is developed in radical form. So, it is better to use rationalisation method which allows us the function gets simplified by multiplying radical form expression by its conjugate function
$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{\sqrt{9+5x+4x^2}-3}{x}$ $\times$ $\dfrac{\sqrt{9+5x+4x^2}+3}{\sqrt{9+5x+4x^2}+3}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{(\sqrt{9+5x+4x^2}-3) \times (\sqrt{9+5x+4x^2}+3)}{x \times (\sqrt{9+5x+4x^2}+3)}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{{(\sqrt{9+5x+4x^2})}^2-{(3)}^2 }{x(\sqrt{9+5x+4x^2}+3)}$
It is time to simplify the algebraic function to go ahead in finding the value of the algebraic function as the limit $x$ tends to zero.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{9+5x+4x^2-9}{x(\sqrt{9+5x+4x^2}+3)}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \require{cancel} \dfrac{\cancel{9}+5x+4x^2-\cancel{9}}{x(\sqrt{9+5x+4x^2}+3)}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{5x+4x^2}{x(\sqrt{9+5x+4x^2}+3)}$
Take common factors from the terms in the numerator of the algebraic function.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{x(5+4x)}{x(\sqrt{9+5x+4x^2}+3)}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \require{cancel} \dfrac{\cancel{x}(5+4x)}{\cancel{x}(\sqrt{9+5x+4x^2}+3)}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{5+4x}{\sqrt{9+5x+4x^2}+3}$
Lastly, substitute $x$ is equal to zero to get the value of the algebraic function as the value of $x$ approaches zero.
$= \,\,\,$ $\dfrac{5+4(0)}{\sqrt{9+5(0)+4{(0)}^2}+3}$
$= \,\,\,$ $\dfrac{5+0}{\sqrt{9+0+0}+3}$
$= \,\,\,$ $\dfrac{5}{\sqrt{9}+3}$
$= \,\,\,$ $\dfrac{5}{3+3}$
$= \,\,\,$ $\dfrac{5}{6}$
A best free mathematics education website that helps students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
A math help place with list of solved problems with answers and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved