In this integral problem, the trigonometric functions $\sin{x}$ and $\cos{x}$ formed a rational expression, and we have to evaluate the integration of the trigonometric function with respect to $x$.
$\displaystyle \int{\dfrac{\sin{x}}{\sin{x}+\cos{x}} \,} dx$
In this step, we take two mathematically acceptable adjustments, which clear the route for evaluating the integration of the trigonometric function in the upcoming steps.
$= \,\,\,$ $\displaystyle \int{\Bigg(1 \times \dfrac{\sin{x}}{\sin{x}+\cos{x}} \Bigg)\,} dx$
$= \,\,\,$ $\displaystyle \int{\Bigg(\dfrac{2}{2} \times \dfrac{\sin{x}}{\sin{x}+\cos{x}} \Bigg)\,} dx$
$= \,\,\,$ $\displaystyle \int{\Bigg(\dfrac{1 \times 2}{2} \times \dfrac{\sin{x}}{\sin{x}+\cos{x}} \Bigg)\,} dx$
$= \,\,\,$ $\displaystyle \int{\Bigg(\dfrac{1}{2} \times \dfrac{2 \times \sin{x}}{\sin{x}+\cos{x}} \Bigg)\,} dx$
$= \,\,\,$ $\displaystyle \int{\Bigg(\dfrac{1}{2} \times \dfrac{2\sin{x}}{\sin{x}+\cos{x}} \Bigg)\,} dx$
Now, use the constant multiple rule of integration for taking the constant out from the integration.
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{ \dfrac{2\sin{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
Previously, we have taken a step for adjusting the function by including the number $2$. Now, we are going to take another step for simplifying this rational expression in trigonometric form.
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{ \dfrac{\sin{x}+\sin{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{ \dfrac{\sin{x}+\sin{x}+\cos{x}-\cos{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
Now, we simplify the trigonometric function in rational form and it splits the rational expression into two parts.
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{ \dfrac{\sin{x}+\cos{x}+\sin{x}-\cos{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{ \dfrac{(\sin{x}+\cos{x})+(\sin{x}-\cos{x})}{\sin{x}+\cos{x}} \,} dx \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{\Bigg[\dfrac{\sin{x}+\cos{x}}{\sin{x}+\cos{x}} +\dfrac{\sin{x}-\cos{x}}{\sin{x}+\cos{x}}\Bigg] \,} dx \Bigg)$
$= \,\,\,$ $\require{cancel} \dfrac{1}{2} \times \Bigg(\displaystyle \int{\Bigg[\dfrac{\cancel{\sin{x}+\cos{x}}}{\cancel{\sin{x}+\cos{x}}} +\dfrac{\sin{x}-\cos{x}}{\sin{x}+\cos{x}}\Bigg] \,} dx \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{\Bigg[1+\dfrac{\sin{x}-\cos{x}}{\sin{x}+\cos{x}}\Bigg] \,} dx \Bigg)$
Now, use the addition rule of integration to expand the integration to both terms in the expression.
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{1 \,}dx+\int{\dfrac{\sin{x}-\cos{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
Now, we can evaluate the integrations of the both functions mathematically.
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(\displaystyle \int{}dx+\int{\dfrac{\sin{x}-\cos{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1+\displaystyle \int{\dfrac{\sin{x}-\cos{x}}{\sin{x}+\cos{x}} \,} dx \Bigg)$
We can notice that the expression in the numerator can be obtained if we differentiate the trigonometric expression in the denominator.
Assume, $u \,=\, \sin{x}+\cos{x}$ and differentiate both sides of the equation with respect to $x$.
$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}(\sin{x}+\cos{x})$
$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, \sin{x}}+\dfrac{d}{dx}{\, \cos{x}}$
$\implies$ $\dfrac{du}{dx} \,=\, \cos{x}-\sin{x}$
$\implies$ $\dfrac{du}{\cos{x}-\sin{x}} \,=\, dx$
$\implies$ $dx \,=\, \dfrac{du}{\cos{x}-\sin{x}}$
Now, we can substitute the value of differential element $dx$ in the integration for finding the integration of the second term. Then, simplify the expression.
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $+$ $\displaystyle \int{\dfrac{\sin{x}-\cos{x}}{u} \,} \times \dfrac{du}{\cos{x}-\sin{x}} \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $+$ $\displaystyle \int{\dfrac{-(\cos{x}-\sin{x})}{u} \,} \times \dfrac{du}{\cos{x}-\sin{x}} \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $+$ $\displaystyle \int{\dfrac{-1 \times (\cos{x}-\sin{x})}{u} \,} \times \dfrac{du}{\cos{x}-\sin{x}} \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $-$ $\displaystyle \int{\dfrac{\cos{x}-\sin{x}}{u} \,} \times \dfrac{du}{\cos{x}-\sin{x}} \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $-$ $\displaystyle \int{\dfrac{\cos{x}-\sin{x}}{u \times (\cos{x}-\sin{x})} \,} du \Bigg)$
$= \,\,\,$ $\require{cancel} \dfrac{1}{2} \times \Bigg(x+c_1$ $-$ $\displaystyle \int{\dfrac{\cancel{\cos{x}-\sin{x}}}{u \times \cancel{(\cos{x}-\sin{x})}} \,} du \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $-$ $\displaystyle \int{\dfrac{1}{u \times 1} \,} du \Bigg)$
$= \,\,\,$ $\dfrac{1}{2} \times \Bigg(x+c_1$ $-$ $\displaystyle \int{\dfrac{1}{u} \,} du \Bigg)$
Now, evaluate the integration of the multiplicative inverse of $u$ by the reciprocal rule of the integration.
$= \,\,\,$ $\dfrac{1}{2} \times \Big(x+c_1-\ln{|u|}+c_2\Big)$
Now, replace the value of variable $u$ to end this problem.
$= \,\,\,$ $\dfrac{1}{2} \times \Big(x+c_1-\ln{|\sin{x}+\cos{x}|}+c_2\Big)$
Now, simplify the expression to obtain the solution of the given integral problem.
$= \,\,\,$ $\dfrac{1}{2} \times \Big(x-\ln{|\sin{x}+\cos{x}|}+c_1+c_2\Big)$
$= \,\,\,$ $\dfrac{1}{2} \times \Big(x-\ln{|\sin{x}+\cos{x}|}+(c_1+c_2)\Big)$
$= \,\,\,$ $\dfrac{1}{2} \times x$ $-$ $\dfrac{1}{2} \times \ln{|\sin{x}+\cos{x}|}$ $+$ $\dfrac{1}{2} \times (c_1+c_2)$
$= \,\,\,$ $\dfrac{1 \times x}{2}$ $-$ $\dfrac{1\times \ln{|\sin{x}+\cos{x}|}}{2}$ $+$ $\dfrac{1\times (c_1+c_2)}{2} $
$= \,\,\,$ $\dfrac{x}{2}$ $-$ $\dfrac{\ln{|\sin{x}+\cos{x}|}}{2}$ $+$ $\dfrac{c_1+c_2}{2} $
$= \,\,\,$ $\dfrac{x}{2}$ $-$ $\dfrac{\ln{|\sin{x}+\cos{x}|}}{2}$ $+$ $c$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved