Math Doubts

Evaluate $\displaystyle \int{\dfrac{1}{1+e^x} \,} dx$

A natural exponential function in terms of $x$ involved in a mathematical relation to form a rational expression. We have to evaluate the indefinite integration of the rational expression with respect to $x$ in this calculus problem.

$\displaystyle \int{\dfrac{1}{1+e^x} \,} dx$

Simplify the complexity of the function

To evaluate the integral of the exponential rational function, we have to simplify the expression firstly.

Take $z = 1+e^x$ and differentiate this equation with respect to $x$.

$\implies$ $\dfrac{d}{dx}{\,(z)} \,=\, \dfrac{d}{dx}{\,(1+e^x)}$

$\implies$ $\dfrac{d}{dx}{\,(z)} \,=\, \dfrac{d}{dx}{\,(1)}+\dfrac{d}{dx}{\,(e^x)}$

$\implies$ $\dfrac{dz}{dx} \,=\, 0+e^x$

$\implies$ $\dfrac{dz}{dx} \,=\, e^x$

$\implies$ $dz \,=\, e^x \times dx$

$\implies$ $dx \,=\, \dfrac{dz}{e^x}$

Now, convert the rational expression in terms of $z$ from $x$.

$\implies$ $dx \,=\, \dfrac{dz}{z-1}$

$\implies$ $\displaystyle \int{\dfrac{1}{1+e^x} \,} dx$ $\,=\,$ $\displaystyle \int{\dfrac{1}{z} \,} \Bigg(\dfrac{dz}{z-1}\Bigg)$

$= \,\,\,$ $\displaystyle \int{\dfrac{1}{z(z-1)} \,} dz$

Decompose Rational expression into Partial fractions

The algebraic expression in rational form represents a rational expression that consists of non-repeated linear factors in the denominator. So, it can be decomposed into sum of the partial fractions.

$\implies$ $\displaystyle \int{\dfrac{1}{z(z-1)} \,} dz$ $\,=\,$ $\displaystyle \int{\Bigg(\dfrac{A}{z}+\dfrac{B}{z-1}\Bigg) \,} dz$

Put $z = 0$, then $A$ $\,=\,$ $\dfrac{1}{0-1}$ $\,=\,$ $\dfrac{1}{-1}$ $\,=\,$ $-1$

Put $z = 1$, then $B$ $\,=\,$ $\dfrac{1}{1}$ $\,=\,$ $1$

Now, substitute the values of $A$ and $B$ to complete the partial fraction decomposition.

$\implies$ $\displaystyle \int{\dfrac{1}{z(z-1)} \,} dz$ $\,=\,$ $\displaystyle \int{\Bigg(\dfrac{-1}{z}+\dfrac{1}{z-1}\Bigg) \,} dz$

$\implies$ $\displaystyle \int{\dfrac{1}{z(z-1)} \,} dz$ $\,=\,$ $\displaystyle \int{\Bigg(-\dfrac{1}{z}+\dfrac{1}{z-1}\Bigg) \,} dz$

$\implies$ $\displaystyle \int{\dfrac{1}{z(z-1)} \,} dz$ $\,=\,$ $\displaystyle \int{\Bigg(\dfrac{1}{z-1}-\dfrac{1}{z}\Bigg) \,} dz$

Evaluate the Indefinite integration of each function

We can now evaluate the indefinite integral of the expression with respect to $x$.

$\implies$ $\displaystyle \int{\Bigg(\dfrac{1}{z-1}-\dfrac{1}{z}\Bigg) \,} dz$ $\,=\,$ $\displaystyle \int{\dfrac{1}{z-1}\,} dz$ $-$ $\displaystyle \int{\dfrac{1}{z}\,} dz$

The indefinite integration of the second integral term can be evaluated by the reciprocal rule of integration.

$=\,\,\,$ $\displaystyle \int{\dfrac{1}{z-1}\,} dz$ $-$ $\log_e{z}+c_2$

Now, take $y = z-1$ and differentiate the equation both sides with respect to $z$.

$\implies$ $\dfrac{d}{dz}{\, (y)}$ $\,=\,$ $\dfrac{d}{dz}{\, (z-1)}$

$\implies$ $\dfrac{dy}{dz}$ $\,=\,$ $\dfrac{d}{dz}{\, (z)}-\dfrac{d}{dz}{\,(1)}$

$\implies$ $\dfrac{dy}{dz}$ $\,=\,$ $1-0$

$\implies$ $\dfrac{dy}{dz}$ $\,=\,$ $1$

$\implies$ $dy$ $\,=\,$ $1 \times dz$

$\implies$ $dy$ $\,=\,$ $dz$

$\implies$ $dz$ $\,=\,$ $dy$

Now, express the first integral function in terms of $y$ by substitution.

$=\,\,\,$ $\displaystyle \int{\dfrac{1}{y}\,} dy$ $-$ $\log_e{z}+c_2$

Now, evaluate the integration of the function by the same rule.

$=\,\,\,$ $\log_e{y}+c_1$ $-$ $\log_e{z}+c_2$

$=\,\,\,$ $\log_e{y}-\log_e{z}$ $+$ $c_1+c_2$

The logarithmic expression can be simplified by the quotient rule of logarithms.

$=\,\,\,$ $\log_e{\Bigg|\dfrac{y}{z}\Bigg|}+c$

Actually, the value of $y$ is $z-1$. So, substitute it in the solution.

$=\,\,\,$ $\log_e{\Bigg|\dfrac{z-1}{z}\Bigg|}+c$

In fact, the integral of the exponential rational function is given in terms of $x$. So, we have to bring the solution back to $x$ by substituting $z = 1+e^x$.

$=\,\,\,$ $\log_e{\Bigg|\dfrac{1+e^x-1}{1+e^x}\Bigg|}+c$

$=\,\,\,$ $\require{cancel} \log_e{\Bigg|\dfrac{\cancel{1}+e^x-\cancel{1}}{1+e^x}\Bigg|}+c$

$=\,\,\,$ $\log_e{\Bigg|\dfrac{e^x}{1+e^x}\Bigg|}+c$

Math Doubts
Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more