An inverse trigonometric expression is formed by the inverse tangent functions. We have to evaluate the differentiation of the inverse trigonometric expression with respect to $x$.
$\dfrac{d}{dx}{\Bigg[\dfrac{1}{b}\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}-\dfrac{1}{a}\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}\Bigg]}$
The derivative of difference of two terms can be evaluated by the difference of their derivatives as per the difference rule of derivatives.
$= \,\,\,$ $\dfrac{d}{dx}{\Bigg(\dfrac{1}{b}\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}\Bigg)}$ $-$ $\dfrac{d}{dx}{\Bigg(\dfrac{1}{a}\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}\Bigg)$
In this differentiation problem, $x$ is a variable and the remaining literals are constants. Hence, the factors, which are constants can be separated from the differentiation by the constant multiple rule of differentiation.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}$
The differentiation of each inverse tan function in the expression can be evaluated in two ways.
Let $y \,=\, \dfrac{x}{b}$ and $z \,=\, \dfrac{x}{a}$, then differentiate each equation with respect to $x$.
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{x}{b}\Big)}$
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{1}{b} \times x\Big)}$
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b} \times \dfrac{d}{dx}{\,(x)}$
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b} \times \dfrac{dx}{dx}$
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b} \times 1$
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b}$
$\implies$ $b \times dy \,=\, 1 \times dx$
$\implies$ $bdy \,=\, dx$
$\,\,\,\therefore \,\,\,\,\,\,$ $dx \,=\, bdy$
Similarly, we can differentiate the second equation as follows.
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{x}{a}\Big)}$
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{1}{a} \times x\Big)}$
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a} \times \dfrac{d}{dx}{\,(x)}$
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a} \times \dfrac{dx}{dx}$
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a} \times 1$
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a}$
$\implies$ $a \times dz \,=\, 1 \times dx$
$\implies$ $adz \,=\, dx$
$\,\,\,\therefore \,\,\,\,\,\,$ $dx \,=\, adz$
Now, comeback to the differential expression in inverse trigonometric functions form.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}$
We have taken that $y \,=\, \dfrac{x}{b}$ and $z \,=\, \dfrac{x}{a}$, and also obtained that $dx \,=\, bdy$ and $dx \,=\, adz$ by differentiating both equations. Now, express the differential expression in terms of $y$ and $z$.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{bdy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{adz}{\,\tan^{-1}{\,(z)}}$
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{b \times dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{a \times dz}{\,\tan^{-1}{\,(z)}}$
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{b} \times \dfrac{d}{dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{a} \times \dfrac{d}{dz}{\,\tan^{-1}{\,(z)}}$
$= \,\,\,$ $\dfrac{1 \times 1}{b \times b} \times \dfrac{d}{dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1 \times 1}{a \times a} \times \dfrac{d}{dz}{\,\tan^{-1}{\,(z)}}$
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{d}{dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{d}{dz}{\,\tan^{-1}{\,(z)}}$
Now, evaluate differentiation of each term by the derivative rule of inverse tan function.
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{1+y^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+z^2}$
Now, replace the values of $y$ and $z$ to get the solution in $x$.
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$
Now, simplify the algebraic expression to get the required result of the given derivative problem.
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{1+\dfrac{x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\dfrac{x^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{\dfrac{1 \times b^2+x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{1\times a^2+x^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{\dfrac{b^2+x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{a^2+x^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{\dfrac{x^2+b^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{x^2+a^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{b^2}{x^2+b^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{a^2}{x^2+a^2}$
$= \,\,\,$ $\dfrac{1 \times b^2}{b^2 \times (x^2+b^2)}$ $-$ $\dfrac{1 \times a^2}{a^2 \times (x^2+a^2)}$
$= \,\,\,$ $\dfrac{b^2}{b^2(x^2+b^2)}$ $-$ $\dfrac{a^2}{a^2(x^2+a^2)}$
$= \,\,\,$ $\require{cancel} \dfrac{\cancel{b^2}}{\cancel{b^2}(x^2+b^2)}$ $-$ $\dfrac{\cancel{a^2}}{\cancel{a^2}(x^2+a^2)}$
$= \,\,\,$ $\dfrac{1}{x^2+b^2}$ $-$ $\dfrac{1}{x^2+a^2}$
$= \,\,\,$ $\dfrac{1 \times (x^2+a^2)-1 \times (x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{(x^2+a^2)-(x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{x^2+a^2-x^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{x^2-x^2+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{\cancel{x^2}-\cancel{x^2}+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+a^2)(x^2+b^2)}$
The following differential expression can also be differentiated in an advanced method.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}$
Each term can be differentiated by the chain rule of differentiation.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{x}{b}\Big)}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{x}{a}\Big)}$
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{1}{b} \times x\Big)}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{1}{a} \times x\Big)}$
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{1}{b} \times \dfrac{d}{dx}{\,(x)}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{1}{a} \times \dfrac{d}{dx}{\,(x)}$
Now, evaluate the derivative of variable with respect to same variable.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{1}{b} \times 1$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{1}{a} \times 1$
Finally, simplify the algebraic expression to obtain the required result of the differentiation of this problem.
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{1}{b}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{1}{a}$
$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$
$= \,\,\,$ $\dfrac{1 \times 1}{b \times b}\times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1 \times 1}{a \times a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$
$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$
$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{1+\dfrac{x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\dfrac{x^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{\dfrac{b^2+x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{a^2+x^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{\dfrac{x^2+b^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{x^2+a^2}{a^2}}$
$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{b^2}{x^2+b^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{a^2}{x^2+a^2}$
$= \,\,\,$ $\dfrac{1 \times b^2}{b^2 \times (x^2+b^2)}$ $-$ $\dfrac{1 \times a^2}{a^2 \times (x^2+a^2)}$
$= \,\,\,$ $\dfrac{b^2}{b^2(x^2+b^2)}$ $-$ $\dfrac{a^2}{a^2(x^2+a^2)}$
$= \,\,\,$ $\require{cancel} \dfrac{\cancel{b^2}}{\cancel{b^2}(x^2+b^2)}$ $-$ $\dfrac{\cancel{a^2}}{\cancel{a^2}(x^2+a^2)}$
$= \,\,\,$ $\dfrac{1}{x^2+b^2}$ $-$ $\dfrac{1}{x^2+a^2}$
$= \,\,\,$ $\dfrac{1 \times (x^2+a^2)-1 \times (x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{(x^2+a^2)-(x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{x^2+a^2-x^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{x^2-x^2+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{\cancel{x^2}-\cancel{x^2}+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+b^2)(x^2+a^2)}$
$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+a^2)(x^2+b^2)}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved