Math Doubts

Evaluate $\dfrac{d}{dx}{\Bigg[\dfrac{1}{b}\tan^{-1}{\Big(\dfrac{x}{b}\Big)}-\dfrac{1}{a}\tan^{-1}{\Big(\dfrac{x}{a}\Big)}\Bigg]}$

An inverse trigonometric expression is formed by the inverse tangent functions. We have to evaluate the differentiation of the inverse trigonometric expression with respect to $x$.

$\dfrac{d}{dx}{\Bigg[\dfrac{1}{b}\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}-\dfrac{1}{a}\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}\Bigg]}$

Difference Rule of Derivatives

The derivative of difference of two terms can be evaluated by the difference of their derivatives as per the difference rule of derivatives.

$= \,\,\,$ $\dfrac{d}{dx}{\Bigg(\dfrac{1}{b}\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}\Bigg)}$ $-$ $\dfrac{d}{dx}{\Bigg(\dfrac{1}{a}\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}\Bigg)$

Separate Constants from Differentiation

In this differentiation problem, $x$ is a variable and the remaining literals are constants. Hence, the factors, which are constants can be separated from the differentiation by the constant multiple rule of differentiation.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}$

Evaluate the Differentiation of Each term

The differentiation of each inverse tan function in the expression can be evaluated in two ways.

Beginner’s Method

Let $y \,=\, \dfrac{x}{b}$ and $z \,=\, \dfrac{x}{a}$, then differentiate each equation with respect to $x$.

$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{x}{b}\Big)}$

$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{1}{b} \times x\Big)}$

$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b} \times \dfrac{d}{dx}{\,(x)}$

$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b} \times \dfrac{dx}{dx}$

$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b} \times 1$

$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{1}{b}$

$\implies$ $b \times dy \,=\, 1 \times dx$

$\implies$ $bdy \,=\, dx$

$\,\,\,\therefore \,\,\,\,\,\,$ $dx \,=\, bdy$

Similarly, we can differentiate the second equation as follows.

$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{x}{a}\Big)}$

$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{d}{dx}{\,\Big(\dfrac{1}{a} \times x\Big)}$

$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a} \times \dfrac{d}{dx}{\,(x)}$

$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a} \times \dfrac{dx}{dx}$

$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a} \times 1$

$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{1}{a}$

$\implies$ $a \times dz \,=\, 1 \times dx$

$\implies$ $adz \,=\, dx$

$\,\,\,\therefore \,\,\,\,\,\,$ $dx \,=\, adz$

Now, comeback to the differential expression in inverse trigonometric functions form.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}$

We have taken that $y \,=\, \dfrac{x}{b}$ and $z \,=\, \dfrac{x}{a}$, and also obtained that $dx \,=\, bdy$ and $dx \,=\, adz$ by differentiating both equations. Now, express the differential expression in terms of $y$ and $z$.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{bdy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{adz}{\,\tan^{-1}{\,(z)}}$

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{b \times dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{a \times dz}{\,\tan^{-1}{\,(z)}}$

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{b} \times \dfrac{d}{dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{a} \times \dfrac{d}{dz}{\,\tan^{-1}{\,(z)}}$

$= \,\,\,$ $\dfrac{1 \times 1}{b \times b} \times \dfrac{d}{dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1 \times 1}{a \times a} \times \dfrac{d}{dz}{\,\tan^{-1}{\,(z)}}$

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{d}{dy}{\,\tan^{-1}{\,(y)}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{d}{dz}{\,\tan^{-1}{\,(z)}}$

Now, evaluate differentiation of each term by the derivative rule of inverse tan function.

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{1+y^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+z^2}$

Now, replace the values of $y$ and $z$ to get the solution in $x$.

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$

Now, simplify the algebraic expression to get the required result of the given derivative problem.

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{1+\dfrac{x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\dfrac{x^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{\dfrac{1 \times b^2+x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{1\times a^2+x^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{\dfrac{b^2+x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{a^2+x^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{1}{\dfrac{x^2+b^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{x^2+a^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2} \times \dfrac{b^2}{x^2+b^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{a^2}{x^2+a^2}$

$= \,\,\,$ $\dfrac{1 \times b^2}{b^2 \times (x^2+b^2)}$ $-$ $\dfrac{1 \times a^2}{a^2 \times (x^2+a^2)}$

$= \,\,\,$ $\dfrac{b^2}{b^2(x^2+b^2)}$ $-$ $\dfrac{a^2}{a^2(x^2+a^2)}$

$= \,\,\,$ $\require{cancel} \dfrac{\cancel{b^2}}{\cancel{b^2}(x^2+b^2)}$ $-$ $\dfrac{\cancel{a^2}}{\cancel{a^2}(x^2+a^2)}$

$= \,\,\,$ $\dfrac{1}{x^2+b^2}$ $-$ $\dfrac{1}{x^2+a^2}$

$= \,\,\,$ $\dfrac{1 \times (x^2+a^2)-1 \times (x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{(x^2+a^2)-(x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{x^2+a^2-x^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{x^2-x^2+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{\cancel{x^2}-\cancel{x^2}+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+a^2)(x^2+b^2)}$

Advanced Method

The following differential expression can also be differentiated in an advanced method.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{b}\Big)}}$ $-$ $\dfrac{1}{a} \times \dfrac{d}{dx}{\,\tan^{-1}{\Big(\dfrac{x}{a}\Big)}}$

Each term can be differentiated by the chain rule of differentiation.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{x}{b}\Big)}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{x}{a}\Big)}$

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{1}{b} \times x\Big)}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{d}{dx}{\,\Big(\dfrac{1}{a} \times x\Big)}$

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{1}{b} \times \dfrac{d}{dx}{\,(x)}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{1}{a} \times \dfrac{d}{dx}{\,(x)}$

Now, evaluate the derivative of variable with respect to same variable.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{1}{b} \times 1$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{1}{a} \times 1$

Finally, simplify the algebraic expression to obtain the required result of the differentiation of this problem.

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2} \times \dfrac{1}{b}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2} \times \dfrac{1}{a}$

$= \,\,\,$ $\dfrac{1}{b} \times \dfrac{1}{b} \times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1}{a} \times \dfrac{1}{a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$

$= \,\,\,$ $\dfrac{1 \times 1}{b \times b}\times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1 \times 1}{a \times a} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$

$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{1+\Big(\dfrac{x}{b}\Big)^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\Big(\dfrac{x}{a}\Big)^2}$

$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{1+\dfrac{x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{1+\dfrac{x^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{\dfrac{b^2+x^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{a^2+x^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{1}{\dfrac{x^2+b^2}{b^2}}$ $-$ $\dfrac{1}{a^2} \times \dfrac{1}{\dfrac{x^2+a^2}{a^2}}$

$= \,\,\,$ $\dfrac{1}{b^2}\times \dfrac{b^2}{x^2+b^2}$ $-$ $\dfrac{1}{a^2} \times \dfrac{a^2}{x^2+a^2}$

$= \,\,\,$ $\dfrac{1 \times b^2}{b^2 \times (x^2+b^2)}$ $-$ $\dfrac{1 \times a^2}{a^2 \times (x^2+a^2)}$

$= \,\,\,$ $\dfrac{b^2}{b^2(x^2+b^2)}$ $-$ $\dfrac{a^2}{a^2(x^2+a^2)}$

$= \,\,\,$ $\require{cancel} \dfrac{\cancel{b^2}}{\cancel{b^2}(x^2+b^2)}$ $-$ $\dfrac{\cancel{a^2}}{\cancel{a^2}(x^2+a^2)}$

$= \,\,\,$ $\dfrac{1}{x^2+b^2}$ $-$ $\dfrac{1}{x^2+a^2}$

$= \,\,\,$ $\dfrac{1 \times (x^2+a^2)-1 \times (x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{(x^2+a^2)-(x^2+b^2)}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{x^2+a^2-x^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{x^2-x^2+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{\cancel{x^2}-\cancel{x^2}+a^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+b^2)(x^2+a^2)}$

$= \,\,\,$ $\dfrac{a^2-b^2}{(x^2+a^2)(x^2+b^2)}$

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more