Inverse hyperbolic functions are six types and the differentiation rules of each inverse hyperbolic function with respect to $x$ is listed here along with its proof in calculus mathematics.

01

$\dfrac{d}{dx} \, \sinh^{-1} x = \dfrac{1}{\sqrt{1+x^2}}$

02

$\dfrac{d}{dx} \, \cosh^{-1} x = \dfrac{1}{\sqrt{x^2 -1}}$

03

$\dfrac{d}{dx} \, \tanh^{-1} x = \dfrac{1}{1-x^2}$

The derivative of inverse hyperbolic tangent function with respect to $x$ is equal to $1$ divided by $1$ minus $x$ squared.

04

$\dfrac{d}{dx} \, \coth^{-1} x = \dfrac{1}{1-x^2}$

05

$\dfrac{d}{dx} \, \operatorname{sech}^{-1} x = \dfrac{-1}{|x| \sqrt{1 -x^2}}$

06

$\dfrac{d}{dx} \, \operatorname{csch}^{-1} x = \dfrac{-1}{|x| \sqrt{x^2 +1}}$

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved