Derivatives of Inverse Hyperbolic functions
Fact-checked:
Inverse hyperbolic functions are six types and the differentiation rules of each inverse hyperbolic function with respect to $x$ is listed here along with its proof in calculus mathematics.
01
Inverse Hyperbolic Sine function
$\dfrac{d}{dx} \, \sinh^{-1} x = \dfrac{1}{\sqrt{1+x^2}}$
02
Inverse Hyperbolic Cosine function
$\dfrac{d}{dx} \, \cosh^{-1} x = \dfrac{1}{\sqrt{x^2 -1}}$
03
Inverse Hyperbolic Tangent function
$\dfrac{d}{dx} \, \tanh^{-1} x = \dfrac{1}{1-x^2}$
The derivative of inverse hyperbolic tangent function with respect to $x$ is equal to $1$ divided by $1$ minus $x$ squared.
04
Inverse Hyperbolic Cotangent function
$\dfrac{d}{dx} \, \coth^{-1} x = \dfrac{1}{1-x^2}$
05
Inverse Hyperbolic Secant function
$\dfrac{d}{dx} \, \operatorname{sech}^{-1} x = \dfrac{-1}{|x| \sqrt{1 -x^2}}$
06
Inverse Hyperbolic Cosecant function
$\dfrac{d}{dx} \, \operatorname{csch}^{-1} x = \dfrac{-1}{|x| \sqrt{x^2 +1}}$
Latest Math Concepts
Jan 08, 2026
What is a Negative Factor of a number?
Oct 13, 2025
What is a Trigonometric ratio?
Sep 18, 2025
What is a Point in geometry?
Sep 13, 2025
What is a Factor in Higher mathematics?
Latest Math Questions
Jan 18, 2026
Evaluate ∫sec(2x) dx
Oct 11, 2025
