A differential equation that contains derivative of a function with an exponent one is called the differential equation of the first order and first degree.

In calculus, we see several types of differential equations but the first order and first degree differential equations are frequently appeared. So, let us learn how the differential equations of first order and first degree look like.

$(x^2-yx^2)\dfrac{dy}{dx}$ $+$ $y^2$ $+$ $xy^2$ $\,=\,$ $0$

In this example, $x$ and $y$ are variables but $y$ represents a function in terms of $x$. The function $y$ is differentiated one time and there is no other derivatives in the given differential equation. Hence, it is called the first order differential equation.

$\implies$ $(x^2-yx^2)\Bigg(\dfrac{dy}{dx}\Bigg)^1$ $+$ $y^2$ $+$ $xy^2$ $\,=\,$ $0$

The power of the derivative of the function is one. Hence, it is a first degree differential equation.

Therefore, the given differential equation is called the differential equation of first order and first degree.

The following are some more examples for the first order and first degree differential equations.

$(1)\,\,\,$ $\sec^2{y}\tan{x}\dfrac{dy}{dx}$ $+$ $\sec^2{x}\tan{y} = 0$

$(2)\,\,\,$ $(x-y)^2\dfrac{dy}{dx} = a^2$

$(3)\,\,\,$ $\dfrac{dy}{dx} = -\dfrac{x\sqrt{1-y^2}}{y\sqrt{1-x^2}}$

$(4)\,\,\,$ $\dfrac{dy}{dx}$ $\,=\,$ $e^{2x-3y}+4x^2e^{-3y}$

$(5)\,\,\,$ $x^4\dfrac{dy}{dx}$ $+$ $x^3y$ $+$ $\log_e{(xy)}$ $\,=\,$ $0$

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved