$\dfrac{d}{dx}{\bigg(\dfrac{1}{f(x)}\bigg)}$ $\,=\,$ $-\,\dfrac{1}{\Big(f(x)\Big)^2} \times \dfrac{d}{dx}{\Big(f(x)\Big)}$

In differential calculus, the functions in reciprocal form are appeared sometimes. It is difficult to perform the differentiation of such functions with derivative rules. So, a special rule is required to find the derivative of a reciprocal function and it is called the reciprocal rule of the derivatives.

Let $f(x)$ be a function in terms of $x$ and its multiplicative inverse is written as follows in mathematics.

$\dfrac{1}{f(x)}$

The derivative of the reciprocal of the function $f(x)$ is written in the following mathematical form.

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{f(x)}\bigg)}$

The derivative of the multiplicative inverse of the function $f(x)$ with respect to $x$ is equal to negative product of the quotient of one by square of the function and the derivative of the function with respect to $x$.

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{f(x)}\bigg)}$ $\,=\,$ $-\,\dfrac{1}{\Big(f(x)\Big)^2} \times \dfrac{d}{dx}{\Big(f(x)\Big)}$

This mathematical relation is called the reciprocal rule of the differentiation.

In differential calculus, the derivative of the function with respect to $x$ is simplify written as $f'(x)$. Hence, the reciprocal rule of the derivatives can also written as follows.

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{f(x)}\bigg)}$ $\,=\,$ $-\,\dfrac{1}{\Big(f(x)\Big)^2} \times f'(x)$

Evaluate $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$

Now, use the reciprocal rule of the derivatives to find its differentiation.

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$ $\,=\,$ $-\dfrac{1}{(2x+3)^2} \times \dfrac{d}{dx}{(2x+3)}$

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$ $\,=\,$ $-\dfrac{1}{(2x+3)^2} \times \Big(\dfrac{d}{dx}{(2x)}+\dfrac{d}{dx}{(3)}\Big)$

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$ $\,=\,$ $-\dfrac{1}{(2x+3)^2} \times (2+0)$

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$ $\,=\,$ $-\dfrac{1}{(2x+3)^2} \times (2)$

$\implies$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$ $\,=\,$ $-\dfrac{1 \times 2}{(2x+3)^2}$

$\,\,\,\therefore\,\,\,\,\,\,$ $\dfrac{d}{dx}{\bigg(\dfrac{1}{2x+3}\bigg)}$ $\,=\,$ $-\dfrac{2}{(2x+3)^2}$

Learn how to derive the reciprocal rule of the differentiation in mathematics.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved