$\dfrac{d}{dx}{\,\tanh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{1-x^2}$

The inverse hyperbolic tangent is written in function form as $\tanh^{-1}{(x)}$ or $\operatorname{arctanh}{(x)}$ if the literal $x$ represents a variable. The differentiation of the inverse hyperbolic tan function with respect to $x$ is written in the following mathematical forms.

$(1).\,\,\,$ $\dfrac{d}{dx}{\, (\tanh^{-1}{x})}$

$(2).\,\,\,$ $\dfrac{d}{dx}{\, (\operatorname{arctanh}{x})}$

In simple form, the derivative of inverse hyperbolic tan function is written as $(\tanh^{-1}{x})’$ or $(\operatorname{arctanh}{x})’$ mathematically in differential calculus.

The differentiation of hyperbolic inverse tangent function with respect to $x$ is equal to multiplicative inverse of difference of $x$ squared from one.

$\implies$ $\dfrac{d}{dx}{\, \tanh^{-1}{x}}$ $\,=\,$ $\dfrac{1}{1-x^2}$

The derivative of inverse hyperbolic tangent function can also be expressed in any variable in mathematics.

$(1) \,\,\,$ $\dfrac{d}{dl}{\, \tanh^{-1}{l}}$ $\,=\,$ $\dfrac{1}{1-l^2}$

$(2) \,\,\,$ $\dfrac{d}{dq}{\, \tanh^{-1}{q}}$ $\,=\,$ $\dfrac{1}{1-q^2}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \tanh^{-1}{y}}$ $\,=\,$ $\dfrac{1}{1-y^2}$

Learn how to prove differentiation rule of inverse hyperbolic tangent function from the first principle of differentiation.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved