$\dfrac{d}{dx}{\, \tanh{x}}$ $\,=\,$ $\operatorname{sech^2}{x}$

Let $x$ represents a variable, the hyperbolic tangent function is written as $\tanh{x}$ in mathematics. The derivative of the hyperbolic tan function with respect to $x$ is written as follows.

$\dfrac{d}{dx}{\, \tanh{(x)}}$ $\,=\,$ $\operatorname{sech^2}{(x)}$

It is simply written in mathematical form as $(\tanh{x})’$ in differential calculus.

The differentiation of the hyperbolic tan function is equal to the square of hyperbolic secant function.

$\implies$ $\dfrac{d}{dx}{\, \tanh{x}}$ $\,=\,$ $\operatorname{sech^2}{x}$

The derivative of hyperbolic tangent can be written in terms of any variable in mathematics.

$(1) \,\,\,$ $\dfrac{d}{dp}{\, \tanh{(p)}}$ $\,=\,$ $\operatorname{sech^2}{(p)}$

$(2) \,\,\,$ $\dfrac{d}{dv}{\, \tanh{(v)}}$ $\,=\,$ $\operatorname{sech^2}{(v)}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \tanh{(y)}}$ $\,=\,$ $\operatorname{sech^2}{(y)}$

Learn how to derive the differentiation of hyperbolic tangent in differential calculus by the first principle of differentiation.

Latest Math Topics

Nov 11, 2022

Nov 03, 2022

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved