Math Doubts

Derivative of Hyperbolic Tangent function


$\dfrac{d}{dx}{\, \tanh{x}}$ $\,=\,$ $\operatorname{sech^2}{x}$


Let $x$ represents a variable, the hyperbolic tangent function is written as $\tanh{x}$ in mathematics. The derivative of the hyperbolic tan function with respect to $x$ is written as follows.

$\dfrac{d}{dx}{\, \tanh{(x)}}$ $\,=\,$ $\operatorname{sech^2}{(x)}$

It is simply written in mathematical form as $(\tanh{x})’$ in differential calculus.

The differentiation of the hyperbolic tan function is equal to the square of hyperbolic secant function.

$\implies$ $\dfrac{d}{dx}{\, \tanh{x}}$ $\,=\,$ $\operatorname{sech^2}{x}$

Other forms

The derivative of hyperbolic tangent can be written in terms of any variable in mathematics.


$(1) \,\,\,$ $\dfrac{d}{dp}{\, \tanh{(p)}}$ $\,=\,$ $\operatorname{sech^2}{(p)}$

$(2) \,\,\,$ $\dfrac{d}{dv}{\, \tanh{(v)}}$ $\,=\,$ $\operatorname{sech^2}{(v)}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \tanh{(y)}}$ $\,=\,$ $\operatorname{sech^2}{(y)}$


Learn how to derive the differentiation of hyperbolic tangent in differential calculus by the first principle of differentiation.

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more