$\dfrac{d}{dx}{\, \sinh{x}}$ $\,=\,$ $\cosh{x}$

Let $x$ denotes a variable, the hyperbolic sine function is written as $\sinh{x}$ in mathematical form. The derivative of the hyperbolic sin function with respect to $x$ is written as follows.

$\dfrac{d}{dx}{\, \sinh{(x)}}$

It can be simply written in mathematical form as $(\sinh{x})’$ in differential calculus.

The differentiation of the hyperbolic sin function is equal to the hyperbolic cosine function.

$\implies$ $\dfrac{d}{dx}{\, \sinh{x}} \,=\, \cosh{x}$

The derivative of hyperbolic sine function can be written in terms of any variable in mathematics.

$(1) \,\,\,$ $\dfrac{d}{dk}{\, \sinh{k}}$ $\,=\,$ $\cosh{k}$

$(2) \,\,\,$ $\dfrac{d}{dm}{\, \sinh{m}}$ $\,=\,$ $\cosh{m}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \sinh{z}}$ $\,=\,$ $\cosh{z}$

Learn how to derive the differentiation of hyperbolic sine function by the first principle of differentiation in differential calculus.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.