Math Doubts

Derivative of Hyperbolic Secant function


$\dfrac{d}{dx}{\, \operatorname{sech}{x}}$ $\,=\,$ $-\operatorname{sech}{x}\tanh{x}$


When $x$ represents a variable, the hyperbolic secant function is written as $\operatorname{sech}{x}$ in mathematical form. The derivative of the hyperbolic secant function with respect to $x$ is written in below form in differential calculus.

$\dfrac{d}{dx}{\, \operatorname{sech}{x}}$

The differentiation formula of the hyperbolic secant function is simply written mathematically as $(\operatorname{sech}{x})’$ in calculus. The differentiation of the hyperbolic secant function is equal to the negative sign of product of hyperbolic secant and tangent functions.

$\implies$ $\dfrac{d}{dx}{\, \operatorname{sech}{x}}$ $\,=\,$ $-\operatorname{sech}{x}\tanh{x}$

Other forms

Mathematically, the derivative of hyperbolic secant function can also be written in terms of any variable in differential calculus.


$(1) \,\,\,$ $\dfrac{d}{dl}{\, \operatorname{sech}{(l)}}$ $\,=\,$ $-\operatorname{sech}{(l)}\tanh{(l)}$

$(2) \,\,\,$ $\dfrac{d}{dq}{\, \operatorname{sech}{(q)}}$ $\,=\,$ $-\operatorname{sech}{(q)}\tanh{(q)}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, \operatorname{sech}{(y)}}$ $\,=\,$ $-\operatorname{sech}{(y)}\tanh{(y)}$


Learn how to prove the differentiation of hyperbolic secant in differential calculus from the first principle of differentiation.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved