# Derivative of Hyperbolic Cosecant function

## Formula

$\dfrac{d}{dx}{\, \operatorname{csch}{x}}$ $\,=\,$ $-\operatorname{csch}{x}\coth{x}$

### Introduction

The hyperbolic cosecant function is written as $\operatorname{csch}{x}$ in mathematical form, when $x$ represents a variable. The derivative of the hyperbolic cosecant function with respect to $x$ is written in the following mathematical form in differential calculus.

$\dfrac{d}{dx}{\, \operatorname{csch}{x}}$

The differentiation rule of the hyperbolic cosecant function is written simply as $(\operatorname{csch}{x})’$ in calculus. The differentiation of the hyperbolic cosecant function is equal to the negative sign of product of hyperbolic cosecant and cotangent functions.

$\implies$ $\dfrac{d}{dx}{\, \operatorname{csch}{x}}$ $\,=\,$ $-\operatorname{csch}{x}\coth{x}$

#### Other forms

The derivative of hyperbolic cosecant function can also be written in terms of any variable in mathematics.

#### Example

$(1) \,\,\,$ $\dfrac{d}{du}{\, \operatorname{csch}{(u)}}$ $\,=\,$ $-\operatorname{csch}{(u)}\coth{(u)}$

$(2) \,\,\,$ $\dfrac{d}{dt}{\, \operatorname{csch}{(t)}}$ $\,=\,$ $-\operatorname{csch}{(t)}\coth{(t)}$

$(3) \,\,\,$ $\dfrac{d}{dz}{\, \operatorname{csch}{(z)}}$ $\,=\,$ $-\operatorname{csch}{(z)}\coth{(z)}$

### Proof

Learn how to prove the differentiation of hyperbolic cosecant in differential calculus from the first principle of differentiation.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.