$\cos{3\theta} \,=\, 4\cos^3{\theta}-3\cos{\theta}$

$4\cos^3{\theta}-3\cos{\theta} \,=\, \cos{3\theta}$

It is called cos triple angle identity and used as a formula in two various cases.

- Cos of triple angle is expanded as the subtraction of three times cos of angle from four times cos cubed of angle.
- The subtraction of three times cos of angle from four times cos cubed of angle is simplified as cos of triple angle.

Cosine of triple angle identity is used to either expand or simplify the triple angle cos functions like $\cos{3x}$, $\cos{3A}$, $\cos{3\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cos{3x} \,=\, 4\cos^3{x}-3\cos{x}$

$(2) \,\,\,\,\,\,$ $\cos{3A} \,=\, 4\cos^3{A}-3\cos{A}$

$(3) \,\,\,\,\,\,$ $\cos{3\alpha} \,=\, 4\cos^3{\alpha}-3\cos{\alpha}$

Learn how to derive the rule of cos triple angle identity by geometric approach in trigonometry.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved