Math Doubts

Difference to Product identity of Cosine functions


$\cos{\alpha}-\cos{\beta}$ $\,=\,$ $-2\sin{\Big(\dfrac{\alpha+\beta}{2}\Big)}\sin{\Big(\dfrac{\alpha-\beta}{2}\Big)}$

An identity that expresses the transformation of difference of cosine functions into product form is called the difference to product identity of cosine functions.


If $\alpha$ and $\beta$ represent the two angles of right triangles, then the cosine functions with the two angles are written in mathematical form as $\cos{\alpha}$ and $\cos{\beta}$. The difference of the cosine functions is written mathematically in the following mathematical form.


The difference of cosine functions can be converted into the product of trigonometric functions as follows.

$\implies$ $\cos{\alpha}-\cos{\beta}$ $\,=\,$ $-2\sin{\Big(\dfrac{\alpha+\beta}{2}\Big)}\sin{\Big(\dfrac{\alpha-\beta}{2}\Big)}$

Other forms

The difference to product transformation for the cosine functions is written in two popular forms.

$(1). \,\,\,$ $\cos{x}-\cos{y}$ $\,=\,$ $-2\sin{\Big(\dfrac{x+y}{2}\Big)}\sin{\Big(\dfrac{x-y}{2}\Big)}$

$(2). \,\,\,$ $\cos{C}-\cos{D}$ $\,=\,$ $-2\sin{\Big(\dfrac{C+D}{2}\Big)}\sin{\Big(\dfrac{C-D}{2}\Big)}$

Thus, we can write the difference to product transformation formula for cosine functions in terms of any two different angles.


Learn how to derive the difference to product transformation identity of cosine functions in trigonometry.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved