A term that contains at least a literal number to represent a quantity is called an algebraic term.

An algebraic term is a term that contains at least one literal. Algebraic terms are usually formed by the involvement of both numbers and literals in different possible combinations to represent quantities mathematically.

The algebraic terms are formed in four different ways possibly to represent quantities mathematically.

01

Every number is a symbol and used to represent a particular quantity. Hence, every real number is a basic example to algebraic terms.

$0$, $3$, $-8$, $\dfrac{4}{7}$, $-\dfrac{13}{6}$, $0.56$, $-3.15$, $\sqrt{13}$, $-\dfrac{2}{\sqrt[\displaystyle 3]{9}}$, $\ldots$

02

Every symbol can be used to represent a quantity. Therefore, the symbols (can be either constants or variables) are also best examples of algebraic terms.

$a$, $p$, $\theta$, $\delta$, $c_o$, $\pi$, $\ldots$

03

Numbers and symbols involve in multiplication to form single terms as their product to represent quantities. So, every algebraic term can be formed in product form by a number and at least one symbol.

$2x$, $-p^{\displaystyle 2}$, $7ab$, $-6m^{\displaystyle 2}n$, $0.5rs^{\displaystyle 2}t^{\displaystyle 3}$, $\Bigg(\dfrac{3}{7}\Bigg)cd^{\displaystyle 2}e^{\displaystyle 3}f^{\displaystyle 4}$, $\ldots$

04

Numbers and symbols are also involved in division to form single terms as their quotient. Therefore, every algebraic term can be formed in quotient form by a number and at least one symbol.

$\dfrac{1}{d}$, $-\dfrac{a}{2b}$ , $\dfrac{p^{\displaystyle 2}}{q}$, $-\dfrac{m^{\displaystyle 4}}{n^{\displaystyle 3}r^{\displaystyle 6}}$, $\ldots$

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.